精英家教网 > 高中数学 > 题目详情

【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.

(1)求关于的函数关系式;

(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.

【答案】(1) (2)侧面积取得最大值时等腰三角形的腰的长度为

【解析】试题分析:(1)由条件所以S;(2),所以得,通过求导分析,得时取得极大值,也是最大值。

试题解析:

(1)设于点,过,垂足为

中,

中,

所以S

(2)要使侧面积最大,由(1)得:

,所以得

得:

时,,当时,

所以在区间上单调递增,在区间上单调递减,

所以时取得极大值,也是最大值;

所以当时,侧面积取得最大值,

此时等腰三角形的腰长

答:侧面积取得最大值时,等腰三角形的腰的长度为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,满足,当时,有.

1)求实数的值;

2)求函数在区间上的解析式,并利用定义证明证明其在该区间上的单调性;

3)解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列中,,且前7项和.

(1)求数列的通项公式;

(2),求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在.

(1)求角的大小

(2)设数列满足项和为的值.

【答案】(1);(2).

【解析】试题分析:

(1)由题意结合三角形内角和为可得.由余弦定理可得,,结合勾股定理可知为直角三角形,.

(2)结合(1)中的结论可得 . 据此可得关于实数k的方程解方程可得.

试题解析:

(1)由已知,又,所以.又由

所以,所以

所以为直角三角形,.

(2) .

所以 ,得

,所以,所以,所以.

型】解答
束】
18

【题目】已知点是平行四边形所在平面外一点如果.(1)求证:是平面的法向量

(2)求平行四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求圆心在直线且与直线相切于点的圆的方程

(2)求与圆外切于点且半径为的圆的方程.

【答案】(1)(2).

【解析】试题分析:

(1)由题意可得圆的一条直径所在的直线方程为据此可得圆心,半径则所求圆的方程为.

(2)圆的标准方程为,得该圆圆心为,半径为,两圆连心线斜率.设所求圆心为结合弦长公式可得.则圆的方程为.

试题解析:

(1)过点且与直线垂直的直线为

.

即圆心,半径

所求圆的方程为.

(2)圆方程化为,得该圆圆心为,半径为,故两圆连心线斜率.设所求圆心为

.

.

点睛:求圆的方程,主要有两种方法:

(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.

(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.

型】解答
束】
20

【题目】如图所示,平面在以为直径的为线段的中点在弧.

(1)求证:平面平面

(2)求证:平面平面

(3)设二面角的大小为的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y表示为x的函数;

(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;

(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列满足,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数.

时,证明:

,若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家为了了解一款产品的质量,随机抽取200名男性使用者和100名女性使用者,对该款产品进行评分,绘制出如下频率分布直方图.

(1)利用组中值(数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数),估计100名女性使用者评分的平均值;

(2)根据评分的不同,运用分层抽样从这200名男性中抽取20名,在这20名中,从评分不低于80分的人中任意抽取3名,求这3名男性中恰有一名评分在区间的概率.

查看答案和解析>>

同步练习册答案