精英家教网 > 高中数学 > 题目详情
14.(1)函数f(x)=x-2,x∈{0,1,2,4}的最大值为2;
(2)函数f(x)=$\frac{3}{2x-1}$在区间[1,5]上的最大值为3,最小值为$\frac{1}{3}$.

分析 (1)根据函数的单调性进行求解即可,
(2)根据分式函数的单调性进行求解即可.

解答 解:(1)函数f(x)=x-2,x∈{0,1,2,4}则定义域上为增函数,
∴当x=4时,函数取得最大值,为4-2=2;
(2)函数f(x)=$\frac{3}{2x-1}$=$\frac{\frac{3}{2}}{x-\frac{1}{2}}$在区间[1,5]上为减函数,
∴当x=1时,函数取得最大值,最大值为f(1)=3,
当x=5时,函数取得最小值,最小值为f(5)=$\frac{3}{2×5-1}=\frac{3}{9}$=$\frac{1}{3}$,
故答案为:(1)2,(2)3,$\frac{1}{3}$.

点评 本题主要考查函数最值的求解,根据函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.求函数f(x)=x+$\frac{1}{x}$,x∈(0,+∞)的单调区间,并画出函数的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若等比数列{an}中,Sn=m3n+1,则实数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆的一条直径为x=2(-2≤y≤0),则此圆的方程是(  )
A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x+2)2+(y+1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={x|x≤-1或1<x<2},B={x|$\frac{x-a}{x-b}$≤0},已知A∩B={-3<x≤-1},A∪B={x|x<2},则a+b的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{\sqrt{x-{x}^{2}}}{|x+3|-3}$+(3x-2)0的定义域为(0,$\frac{2}{3}$)∪($\frac{2}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}是各项均为正数的等比数列,a2=4,a1a4=32,数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求数列{an}与{bn}的通项公式;
(2)若集合M={n|$\frac{{b}_{n}{b}_{n+1}}{{a}_{n}}$≥λ,n∈N*}中元素的个数为4,试求实数λ的取值范围;
(3)将数列{an}与{bn}按a1,b1,a2,b2,a3,b3,…,an,bn,…的顺序排好后,再删去其中小于2015的项,剩下的项按原来的顺序构成一个新数列{cn},试求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$\frac{2x}{lnx}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.全集U={1,2,3,4,5,6,7,8,9},(∁UA)∪∁UB={2,3,4,6,7,8},(∁UA)∩B={3,7},(∁UA)∪B={1,3,5,6,7,8,9}.求A,B.

查看答案和解析>>

同步练习册答案