精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱BC,CC1,C1D1,AA1的中点,O为AC与BD的交点.
(1)求证:平面BDF平面B1D1H;
(2)求证:平面BDF⊥平面A1AO;
(3)求证:EG⊥AC.
证明:(1)正方体ABCD-A1B1C1D1中,E,F,G,H分别为棱BC,CC1,C1D1,AA1的中点,∴B1D1BD.
∵BD?平面BDF,而B1D1不在平面BDF 内,∴B1D1平面BDF.
取DD1的中点N,则 AHD1N 且AH=D1N,故AHND1为平行四边形,∴HD1AN.
同理可证 BFAN,故HD1BF.
∵BF?平面BDF,而HD1不在平面BDF 内,∴HD1平面BDF.
这样,在平面平面B1D1H 内有两条相交直线B1D1和HD1都和平面BDF平行,
∴平面BDF平面B1D1H.
(2)∵O为AC与BD的交点,∴BD⊥AO.再由A1A⊥平面ABCD可得 A1A⊥BD.
故BD垂直于平面平面A1AO中的两条相交直线AO和A1A,∴BD⊥平面A1AO.
而BD?平面BDF,∴平面BDF⊥平面A1AO.
(3)取CD的中点M,连接EM,GM,则EM是△CBD的中位线,∴EMBD,由AC⊥BD 可得 EM⊥AC.
由GM和棱A1A平行可得GM⊥平面ABCD,GM⊥AC.
这样,AC垂直于平面EGM中的两条相交直线EM、GM,∴AC⊥平面EGM,∴AC⊥EG.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,棱长为1的正方体ABCD-A1B1C1D1中,
(1)求证:AC⊥平面B1D1DB;
(2)求证:BD1⊥平面ACB1
(3)求三棱锥B-ACB1体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的三视图如下图所示,其中俯视图为正三角形,设D为AA1的中点.
(Ⅰ)作出该几何体的直观图并求其体积;
(Ⅱ)求证:平面BB1C1C⊥平面BDC1
(Ⅲ)BC边上是否存在点P,使AP平面BDC1?若不存在,说明理由;若存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

作等腰直角三角形ABC的斜边AB的中线CD,沿CD将△ABC折叠,使平面ACD⊥平面BCD,则折叠后AC与BC的夹角∠ACB的度数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知AB⊥平面BCE,CDab,△BCE是正三角形,AB=BC=2CD.
(Ⅰ)在线段BE上是否存在一点F,使CF平面ADE?
(Ⅱ)求证:平面ADE⊥平面ABE;
(Ⅲ)求二面角A-DE-B的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.
求证:
(1)平面AB1F1平面C1BF;
(2)平面AB1F1⊥平面ACC1A1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,点M的坐标是(4,5,6),则点M关于y轴的对称点在坐标平面xOz上的射影的坐标为______.

查看答案和解析>>

同步练习册答案