精英家教网 > 高中数学 > 题目详情

【题目】设关于的一元二次方程

(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

【答案】(1);(2).

【解析】试题分析:由二次方程有实数根可得满足的条件,()中由可以取得值得到所有基本事件个数及满足条件的基本事件个数,求其比值可求概率;()中由范围得到对应的区域,并求得满足的区域,求其面积比可求其概率

试题解析:设事件方程有实数根

时,因为方程有实数根,

)基本事件共12个,如下:(00),(01),(02),(10),(11),(12),(20),(21),(22),(30),(31),(32)其中第一个数表示的取值,第二个数表示的取值,事件包含9个基本事件,事件发生的概率为

)实验的全部结果所构成的区域为

构成事件的区域为

所以所求的概率为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:
①若 <0,则 + >2;
②若a>b,则am2>bm2
③在△ABC中,若sinA=sinB,则A=B;
④任意x∈R,都有ax2﹣ax+1≥0,则0<a≤4.
其中是真命题的有(
A.①②
B.②③
C.①③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| |=
(1)求cos(α﹣β)的值;
(2)若﹣ <β<0<α< ,且sinβ=﹣ ,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图如图所示.(每个分组包括左端点,不包括右端点,如第一组表示[1 000,1 500)。

(1)求居民收入在[2000,3 000)的频率;

(2)根据频率分布直方图算出样本数据的中位数;

3为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中按分层抽样方法抽出100人作进一步分析,则月收入在[2 000,3 000)的这段应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).

(I)求的解析式及单调递减区间;

(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体为棱的中点.

Ⅰ)求证:平面

Ⅱ)求证:平面平面

Ⅲ)若正方体棱长为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.(本小题满分12分)

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形EF分别为PCBD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

)求证:EF//平面PAD

)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲所示, 是梯形的高, ,先将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.

(1)证明:

(2)当时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}前n项和Sn满足:2Sn+an=1
(1)求数列{an}的通项公式;
(2)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

查看答案和解析>>

同步练习册答案