精英家教网 > 高中数学 > 题目详情
已知|
a
|=1,|
b
|=4,且
a
b
=-2,则
a
b
所成的夹角为(  )
A、
π
6
B、
π
3
C、
3
D、
6
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:
a
b
所成的夹角为θ,θ∈[0,π],则由cosθ=
a
b
|
a
|•|
b
|
 的值,求得θ的值.
解答: 解:设
a
b
所成的夹角为θ,θ∈[0,π],则由cosθ=
a
b
|
a
|•|
b
|
=
-2
1×4
=-
1
2

可得θ=
3

故选:C.
点评:本题主要考查用两个向量的数量积表示两个向量的夹角,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商场经销一批进货单价为40元的商品,销售单价与日均销售量的关系如下表:
销售单价/元50515253545556
日均销售量/个48454239363330
为了获取最大利润,售价定为多少时较为合理?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx(sinx-
3
cosx).
(1)求f(x)的最小正周期;
(2)若对任意x∈[0,
π
2
],使得[f(x)+
3
]+2m=0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(a+2x)5的展开式中,x0的系数等于40,则a等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长为1cm的线段AB上任取一点C,现以AC、BC为邻边作矩形,则该矩形面积不小于
3
16
cm2的概率为(  )
A、
1
3
B、
1
2
C、
3
4
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求函数f(x)在[-2,2]上的最值;
(2)设函数g(x)的导函数g′(x)=f(x)+3x+8,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)对任意x∈R,都有f(x+3)=-f(x),且当x∈[0,1]时,f(x)=
x
5
,则f(5)=(  )
A、10
B、-10
C、
1
5
D、-
1
5

查看答案和解析>>

科目:高中数学 来源: 题型:

5A级景区沂山为提高经济效益,现对某一景点进行改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:y=f(x)=ax2+
101
50
x-bln
x
10
,a、b为常数,当x=10万元,y=19.2万元;当x=50万元,y=74.4万元.(参考数据:In2=0.7,In3=1.1,In5=1.6)
(1)求f(x)的解析式.
(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入)

查看答案和解析>>

科目:高中数学 来源: 题型:

若θ是第二象限角,cos
θ
2
-sin
θ
2
=
1-sinθ
,则角
θ
2
的终边所在的象限是
 

查看答案和解析>>

同步练习册答案