精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为菱形,底面为棱的中点,为棱的动点.

1)求证:平面

2)若二面角的余弦值为,求点的位置.

【答案】1)证明见解析;(2)点为线段的中点.

【解析】

1)分析出是等边三角形,由三线合一得出,由,由,由底面,可得出,然后利用直线与平面垂直的判定定理可得出平面

2)以点为坐标原点,所在直线分别为轴建立空间直角坐标系,设,计算出平面和平面的法向量,由计算出实数的值,即可确定点的位置.

1)如下图所示,由于四边形是菱形,则

是等边三角形,的中点,

.

底面平面

平面平面

2)由(1)知,,且底面,以点为坐标原点,所在直线分别为轴建立空间直角坐标系

则点,设

设平面的一个法向量为

,即,得

,则,则平面的一个法向量为.

同理可得平面的一个法向量为

由题意可得,解得.

因此,当点为线段的中点时,二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:极坐标与参数方程]

在直角坐标系中,曲线的参数方程为是参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的极坐标方程和曲线的直角坐标方程;

(2)若射线 与曲线交于两点,与曲线交于两点,求取最大值时的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)

1)求的值;

2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象在点处的切线的倾斜角为,求上的最小值;

2)若存在,使,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,试判断函数的极值情况,并说明理由;

2)若有两个极值点.

①求实数的取值范围;

②证明:.注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.

(1)求椭圆的方程;

(2)过椭圆左顶点做两条互相垂直的直线,且分别交椭圆于两点(不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆是椭圆与轴的两个交点,为椭圆C的上顶点,设直线的斜率为,直线的斜率为

(1)求椭圆的离心率;

(2)设直线与轴交于点,交椭圆于两点,且满足,当的面积最大时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.

1)当0≤x≤200时,求函数vx)的表达式;

2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx=xvx)可以达到最大,并求出最大值.(精确到1/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列4个命题:

①函数的最小正周期是;②直线是函数的一条对称轴;③若,且为第二象限角,则;④函数在区间上单调递减.其中正确的是__________。(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案