分析 由条件利用同角三角函数的基本关系求得sin(α-$\frac{π}{6}$)的值,再利用两角和差的余弦公式求得cosα=cos[(α-$\frac{π}{6}$)+$\frac{π}{6}$]的值.
解答 解:∵cos(α-$\frac{π}{6}$)=$\frac{15}{17}$,且α为大于$\frac{π}{6}$的锐角,故sin(α-$\frac{π}{6}$)=$\sqrt{{1-cos}^{2}(α-\frac{π}{6})}$=$\frac{8}{17}$,
∴cosα=cos[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=cosα(α-$\frac{π}{6}$)cos$\frac{π}{6}$-sin(α-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{15}{17}$•$\frac{\sqrt{3}}{2}$-$\frac{8}{17}$•$\frac{1}{2}$=$\frac{15\sqrt{3}-8}{34}$.
点评 本题主要考查同角三角函数的基本关系,两角和差的余弦公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com