精英家教网 > 高中数学 > 题目详情
精英家教网如图,在△OAB中,已知P为线段AB上的一点,
OP
=x•
OA
+y•
OB

(1)若
BP
=
PA
,求x,y的值;
(2)若
BP
=3
PA
|
OA
|=4
|
OB
|=2
,且
OA
OB
的夹角为60°时,求
OP
AB
的值.
分析:(1),据相等向量的定义及向量的运算法则:三角形法则求出
OP
,利用平面向量基本定理求出x,y的值
(2)利用向量的运算法则将
OP
AB
OA
OB
表示,利用向量数量积的运算律将
OP
AB
OA
OB
的模及它们的数量积表示求出值.
解答:解:(1)∵
BP
=
PA

BO
+
OP
=
PO
+
OA
,即2
OP
=
OB
+
OA

OP
=
1
2
OA
+
1
2
OB
,即x=
1
2
y=
1
2

(2)∵
BP
=3
PA

BO
+
OP
=3
PO
+3
OA
,即4
OP
=
OB
+3
OA

OP
=
3
4
OA
+
1
4
OB

x=
3
4
y=
1
4

OP
AB
=(
3
4
OA
+
1
4
OB
)•(
OB
-
OA
)

=
1
4
OB
OB
-
3
4
OA
OA
+
1
2
OA
OB

=
1
4
×22-
3
4
×42+
1
2
×4×2×
1
2
=-9
点评:本题考查向量的加法、减法的运算法则;向量的数量积及其运算律;
利用运算法则将未知的向量用已知向量表示,从而将未知向量的数量积,用已知向量的数量积表示.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,
OC
=
1
3
OA
OD
=
1
2
OB
,AD与BC交于点M,
OA
=
a
OB
=
b

(1)试用向量
a
b
表示
OM

(2)在线段AC上取一点E,线段BD上取一点F,使EF过M点,
OE
OA
OF
OB
,求证:
1
λ
+
2
μ
=5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州二模)如图,在△OAB中,C为OA上的一点,且
OC
=
2
3
OA
,D
是BC的中点,过点A的直线l∥OD,P是直线l上的任意点,若
OP
=λ1
OB
+λ2
OC
,则λ12=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△OAB中,已知|O
A
| =2,|O
B
| =2
3
,∠AOB=90°,单位圆O与OA交于C,A
D
B
,λ∈(0,1)
,P为单位圆O上的动点.
(1)若O
C
+O
P
=O
D
,求λ的值;
(2)记|P
D
|
的最小值为f(λ),求f(λ)的表达式及f(λ)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△OAB中,延长BA到C,使AC=BA,在OB上取点D,使DB=
1
3
OB,DC与OA交于E,设
OA
=
a
OB
=
b
,用
a
b
表示向量
OC
DC
DE

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△OAB中,已知P为线段AB上的一点,且|
AP
|=2|
PB
|.
(Ⅰ)试用
OA
OB
表示
OP

(Ⅱ)若|
OA
|
=3,
|OB|
=2,且∠AOB=60°,求
OP
AB
的值.

查看答案和解析>>

同步练习册答案