精英家教网 > 高中数学 > 题目详情

【题目】对于集合,定义了一种运算,使得集合中的元素间满足条件:如果存在元素,使得对任意,都有,则称元素是集合对运算的单位元素.例如: ,运算为普通乘法;存在,使得对任意,都有,所以元素是集合对普通乘法的单位元素.

下面给出三个集合及相应的运算

,运算为普通减法;

{表示阶矩阵, },运算为矩阵加法;

(其中是任意非空集合),运算为求两个集合的交集.

其中对运算有单位元素的集合序号为( )

A. ①② B. ①③ C. ①②③ D. ②③

【答案】D

【解析】对于①,若,运算“⊕”为普通减法,而普通减法不满足交换律,故没有单位元素;
对于②,表示阶矩阵,运算“⊕”为矩阵加法,其单位元素为全为0的矩阵;
(其中是任意非空集合),运算“⊕”为求两个集合的交集,
其单位元素为集合
故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x1)=-f(x),且当x∈[0,1)时,f(x)log2(x1),给出下列命题

f(2014)f(2015)0

函数f(x)在定义域上是周期为2的函数;

直线yx与函数f(x)的图象有2个交点;

函数f(x)的值域为(1,1)

其中正确的是(  )

A. ①② B. ②③

C. ①④ D. ①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0,+∞)上的单调函数f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,则方程f(x)﹣f′(x)=1的解所在区间是 (  )

A. (2,3) B. C. D. (1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中, ,四边形为正方形,平面平面

(1)证明:在线段上存在一点,使得平面

(2)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市随机抽取一年(365天)内100天的空气质量指数Air Pollution Index)的监测数据,结果统计如下:

大于300

空气质量

轻微污染

轻度污染

中度污染

中度重

污染

重度污染

天数

10

15

20

30

7

6

12

(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面列联表并判断能否有的把握认为该市本年空气重度污染与供暖有关

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:

(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当在区间时企业正常生产在区间时对企业限产(即关闭的产能),当在区间时对企业限产300以上时对企业限产企业甲是被管控的企业之一若企业甲正常生产一天可得利润2万元,若以频率当概率,不考虑其他因素:

①在这一年中随意抽取5天,求5天中企业被限产达到或超过的恰为2天的概率;

②求企业甲这一年因限产减少的利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[1,+∞)上的函数f(x)满足:①f(2x)=2f(x);②当2≤x≤4时,f(x)=1-|x-3|.则函数g(x)=f(x)-2在区间[1,28]上的零点个数为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的单调递增区间;

(2)在区间内至少存在一个实数,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.

1从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;

2从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以为极点, 轴的正半轴为极轴的极坐标系中,曲线是圆心为,半径为1的圆.

(1)求曲线 的直角坐标方程;

(2)设为曲线上的点, 为曲线上的点,求的取值范围.

查看答案和解析>>

同步练习册答案