精英家教网 > 高中数学 > 题目详情

【题目】已知函数 满足关系(其中是常数).

)如果 ,求函数的值域;

)如果 ,且对任意,存在 ,使得恒成立,求的最小值;

)如果,求函数的最小正周期(只需写出结论).

【答案】(1)的值域为;(2)的最小值为;(3) .

【解析】试题分析:(1)先得到函数的表达式,再就是换元t,得到关于t的二次函数,直接研究二次函数的单调性即可;(2)恒成立,所以 应该分别为函数上的最小值和最大值,故根据函数的特点可得到的最小值就是函数的半周期。(3)直接由周期的定义求得即可。

.

)因为

所以

,所以也就是求函数的值域,

所以的值域为

)因为

所以

因为对任意,存在 ,使得恒成立,

所以 应该分别为函数上的最小值和最大值,

所以的最小值就是函数的半周期,

也就是的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C的一个焦点为,对应于这个焦点的准线方程为

(1)写出抛物线C的方程;

(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程;

(3)点P是抛物线C上的动点,过点P作圆的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线方程为

(Ⅰ)求的解析式;

(Ⅱ)若对恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线斜率为1,求函数上的最值;

(2)令,若时,恒成立,求实数的取值范围;

(3)当时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,f(t)表示学生注意力随时间t(分钟)的变化规律\left(f(t)越大,表明学生注意力越集中),经过实验分析得知:

(1)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

(2)讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?

(3)一道数学难题,需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,教师能否在学生达到所需的状态下讲授完这道题目?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当为自然对数的底数)时,求的最小值;

(2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015高考广东,文19】设数列的前项和为.已知,且当

时,

(1)求的值;

(2)证明:为等比数列;

(3)求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,映射满足,求满足条件的映射的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6位选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如下图所示的茎叶图.为了增加结果的神秘感,主持人暂时没有公布甲、乙两班最后一位选手的成绩.

(Ⅰ)求乙班总分超过甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.请你从平均分和方差的角度来分析两个班的选手的情况.

查看答案和解析>>

同步练习册答案
鍏� 闂�