【题目】如图,在四棱锥中,已知四边形是边长为的正方形,点在底面上的射影为底面的中心点,点在棱上,且的面积为1.
(1)若点是的中点,求证:平面平面;
(2)在棱上是否存在一点使得二面角的余弦值为?若存在,求出点的位置;若不存在,说明理由.
【答案】(1)证明见解析;(2)存在点符合题意,点为棱靠近端点的三等分点
【解析】
(1)利用等腰三角形“三线合一”证明平面,进而证明平面平面;
(2)分别以为轴,轴,轴建立空间直角坐标系,设,利用平面的法向量求二面角,进而计算得到即可
(1)∵点在底面上的射影为点,∴平面,
∵四边形是边长为的正方形,∴,
∵三角形的面积为1,∴,即,∴,
∵,点是的中点,
∴,同理可得,
又因为,平面,
∴平面,
∵平面,
∴平面平面
(2)存在,
如图,连接,易得两两互相垂直,
分别以为轴,轴,轴建立空间直角坐标系,
则,假设存在点使得二面角的余弦值为,
不妨设,
∵点在棱上,∴,
又,
∴,
∴,
,,
设平面的法向量为,则,∴,
令,可得,∴平面的一个法向量为,
又平面的一个法向量为,二面角的余弦值为,
∴,即,
解得或(舍)
所以存在点符合题意,点为棱靠近端点的三等分点
科目:高中数学 来源: 题型:
【题目】甘肃省是土地荒漠化较为严重的省份,一代代治沙人为了固沙、治沙,改善生态环境,不断地进行研究与实践,实现了沙退人进.年,古浪县八步沙林场“六老汉”三代人治沙群体作为优秀代表,被中宣部授予“时代楷模”称号.在治沙过程中为检测某种固沙方法的效果,治沙人在某一实验沙丘的坡顶和坡腰各布设了个风蚀插钎,以测量风蚀值.(风蚀值是测量固沙效果的指标之一,数值越小表示该插钎处被风吹走的沙层厚度越小,说明固沙效果越好,数值为表示该插钎处没有被风蚀)通过一段时间的观测,治沙人记录了坡顶和坡腰全部插钎测得的风蚀值(所测数据均不为整数),并绘制了相应的频率分布直方图.
(Ⅰ)根据直方图估计“坡腰处一个插钎风蚀值小于”的概率;
(Ⅱ)若一个插钎的风蚀值小于,则该数据要标记“”,否则不标记根据以上直方图,完成列联表:
标记 | 不标记 | 合计 | |
坡腰 | |||
坡顶 | |||
合计 |
并判断是否有的把握认为数据标记“”与沙丘上插钎所布设的位置有关?
附:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂根据市场需求开发三角花篮支架(如图),上面为花篮,支架由三根细钢管组成,考虑到钢管的受力和花篮质量等因素,设计支架应满足:①三根细钢管长均为1米(粗细忽略不计),且与地面所成的角均为;②架面与架底平行,且架面三角形与架底三角形均为等边三角形;③三根细钢管相交处的节点分三根细钢管上、下两段之比均为.定义:架面与架底的距离为“支架高度”,架底三角形的面积与“支架高度”的乘积为“支架需要空间”.
(1)当时,求“支架高度”;
(2)求“支架需要空间”的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市房管局为了了解该市市民2018年1月至2019年1月期间购买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:万元/平方米,进行了一次调查统计,制成了如图1所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价(单位:万元平方米),制成了如图2所示的散点图(图中月份代码1-13分别对应2018年1月至2019年1月).
(1)试估计该市市民的平均购房面积.
(2)现采用分层抽样的方法从购房面积位于的40位市民中随机取4人,再从这4人中随机抽取2人,求这2人的购房面积恰好有一人在的概率.
(3)根据散点图选和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值,如下表所示:
0.000591 | 0.000164 | |
0.00050 |
请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测2019年6月份的二手房购房均价(精确到0.001)./span>
参考数据:,,,,,,,,
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是( )
A. 回答该问卷的总人数不可能是100个
B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多
C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少
D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,给出下列四个结论:
①函数的最小正周期是;
②函数在区间上是减函数;
③函数的图象关于直线对称;
④函数的图象可由函数的图象向左平移个单位得到其中所有正确结论的编号是( )
A.①②B.①③C.①②③D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为F1F2,右顶点为A,P为椭圆C上任意一点.已知的最大值为3,最小值为2.
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于MN两点(MN不是左右顶点),且以MN为直径的圆过点A.求证:直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,点A为曲线上的动点,点B在线段OA的延长线上,且满足,点B的轨迹为.
(1)求,的极坐标方程;
(2)设点C的极坐标为(2,0),求△ABC面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com