精英家教网 > 高中数学 > 题目详情
在棱长为2的正方体中,设是棱的中点.

⑴ 求证:
⑵ 求证:平面
⑶ 求三棱锥的体积.
⑴连接BD,AE. 故,因底面ABCD,故,故平面 ⑵连接,设,连接,则中点,而的中点,则平面 ⑶

试题分析:(1)连接BD,AE.  因四边形ABCD为正方形,故
底面ABCD,面ABCD,故,又
平面平面,故.
⑵. 连接,设,连接
中点,而的中点,故为三角形的中位线,
平面平面,故平面.
⑶. 由⑵知,点A到平面的距离等于C到平面的距离,故三棱锥的体积,而,三棱锥的体积为.
点评:要证明线面平行常借助于平面外一直线与平面内一直线平行;线面的垂直关系中常用的思路是线线垂直与线面垂直的互相转化;第三问求三棱锥体积时采用等体积法的思路转化底面和顶点,是底面积和高都容易求出
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是半圆的直径,是半圆上除外的一个动点,垂直于半圆所在的平面,

⑴证明:平面平面
⑵当三棱锥体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,底面,点的中点.

(1)求证:侧面平面
(2)若异面直线所成的角为,且
求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形PCBM是直角梯形,.又,直线AM与直线PC所成的角为

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且

(Ⅰ)求证:CF∥面ABE;
(Ⅱ)求证:面ABE ⊥平面BDE;
(Ⅲ)求该几何体ABECD的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下图所示,在直三棱柱ABCA1B1C1中,AC=3,BC=4,AB=5,AA1=4,点DAB的中点.

(1)求证:ACBC1
(2)求证:AC1平面CDB1
(3)求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分.
如图,已知正四棱柱的底面边长是,体积是分别是棱的中点.

(1)求直线与平面所成的角(结果用反三角函数表示);
(2)求过的平面与该正四棱柱所截得的多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.

(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.

查看答案和解析>>

同步练习册答案