精英家教网 > 高中数学 > 题目详情
已知函数f(x)满足f(1)=a,且,若对任意的n∈N*总有f(n+3)=f(n)成立,则a在(0,1]内的可能值有 ( )
A.1个
B.2个
C.3个
D.4个
【答案】分析:欲求出对任意的n∈N*总有f(n+3)=f(n)成立时a在(0,1]内的可能值,只须考虑n=1时,使得方程f(4)=f(1)的a在(0,1]内的可能值即可.对a进行分类讨论,结合分段函数的解析式列出方程求解即可.
解答:解:∵0<a≤1,
∴f(2)=2f(1)=2a,
①当0<a≤时,0<2a≤,0<4a≤1,
∴f(3)=2f(2)=4a,
f(4)=2f(3)=8a,
此时f(4)=f(1)不成立;
②当<a≤时,<2a≤1,1<4a≤2,
∴f(3)=2f(2)=4a,
f(4)==
此时f(4)=f(1)?=a?
③当<a≤1时,1<2a≤2,2<4a≤4,
∴f(3)==
∴f(4)=2f(3)=
此时f(4)=f(1)?=a?a=1;
综上所述,当n=1时,有f(n+3)=f(n)成立时,
则a在(0,1]内的可能值有两个. 
故选B.
点评:本小题主要考查分段函数、函数恒成立问题、方程式的解法等基础知识,考查运算求解能力,考查分类讨论思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x+y)=f(x)f(y),(x,y∈R)且f(1)=
1
2

(1)若n∈N*时,求f(n)的表达式;
(2)设bn=
nf(n+1)
f(n)
  (n∈N*)
,sn=b1+b2+…+bn,求
1
s1
+
1
s2
+…+
1
sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x) 满足f(x+4)=x3+2,则f-1(1)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+f'(0)-e-x=-1,函数g(x)=-λlnf(x)+sinx是区间[-1,1]上的减函数.
(1)当x≥0时,曲线y=f(x)在点M(t,f(t))的切线与x轴、y轴围成的三角形面积为S(t),求S(t)的最大值;
(2)若g(x)<t2+λt+1在x∈[-1,1]时恒成立,求t的取值范围;
(3)设函数h(x)=-lnf(x)-ln(x+m),常数m∈Z,且m>1,试判定函数h(x)在区间[e-m-m,e2m-m]内的零点个数,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则
f2(1)+f(2)
f(1)
+
f2(2)+f(4)
f(3)
+
f2(3)+f(6)
f(5)
+
f2(4)+f(8)
f(7)
=
24.
24.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海二模)已知函数f(x)满足:当x≥1时,f(x)=f(x-1);当x<1时,f(x)=2x,则f(log27)=(  )

查看答案和解析>>

同步练习册答案