精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=loga|$\frac{x-1}{x+1}$|(0<a<1).
(1)求函数f(x)的定义域,并判断f(x)在定义域上的奇偶性;
(2)讨论函数f(x)在区间(-1,1)上的单调性.

分析 (1)由$\frac{x-1}{x+1}$≠0,x+1≠0,解得即可得出函数f(x)的定义域;计算f(-x)与±f(x)的关系,即可判断出.
(2)函数f(x)在区间(-1,1)上的减函数.利用单调性的证明方法即可证明.

解答 解:(1)由$\frac{x-1}{x+1}$≠0,x+1≠0,解得x≠±1.
∴函数f(x)的定义域为{x|x∈R,x≠±1}.
f(-x)=$lo{g}_{a}|\frac{-x-1}{-x+1}|$=-$lo{g}_{a}|\frac{x-1}{x+1}|$=-f(x),
∴函数f(x)在定义域上是奇函数.
(2)函数f(x)在区间(-1,1)上的减函数.
证明:?x1,x2∈(-1,1),且x1<x2
则f(x1)-f(x2)=$lo{g}_{a}\frac{1-{x}_{1}}{1+{x}_{2}}$-$lo{g}_{a}\frac{1-{x}_{2}}{1+{x}_{2}}$=$lo{g}_{a}\frac{(1-{x}_{1})(1+{x}_{2})}{(1+{x}_{1})(1-{x}_{2})}$,
∵(1-x1)(1+x2)-(1+x1)(1-x2)=2(x2-x1)>0,
(1-x1)(1+x2)>0,(1+x1)(1-x2)>0.
∴$\frac{(1-{x}_{1})(1+{x}_{2})}{(1+{x}_{1})(1-{x}_{2})}$>1.
∴$lo{g}_{a}\frac{(1-{x}_{1})(1+{x}_{2})}{(1+{x}_{1})(1-{x}_{2})}$>0,
∴f(x1)>f(x2).
∴函数f(x)在区间(-1,1)上的减函数.

点评 本题考查了单调性的证明方法、奇偶性的判定方法、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x|x-m|,x∈R,且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图象并直接写出f(x)单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等比数列{an}中,a2011a2012a2013=64,则a2012=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.根据下列条件,求双曲线的方程:
(1)离心率为$\frac{5}{4}$,虚半轴长为2;
(2)与椭圆x2+5y2=5共焦点,且一条渐近线方程为y-$\sqrt{3}$x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(0,-1)在角α的终边上,则所有角α组成的集合S={α|α=$\frac{3π}{2}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某长途客车站有6个售票窗口,3名乘客各选一个窗口购票,共有216种不同的选择方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.${log}_{\frac{1}{3}}$29∈(k,k+1),k∈Z,则k=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若直线ax+by+c=0经过一、三、四象限,则有(  )
A.ab>0,bc>0B.ab>0,bc<0C.ab<0,bc>0D.ab<0,bc<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某个公司调查统计它的员工每周参与体育锻炼的时间,样本容量为100人,将调查结果统计为频率分布直方图,如图.我们将每周体育锻炼时间不低于150分钟的人称为“勤于锻炼者”,并将有关性别的信息统计到表中.
 “勤于锻炼者” 非“勤于锻炼者” 合计
 男 25  70
 女   
 合计   
(1)根据图表信息,判断“勒于锻炼者”是否与性别有关?
附:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}+{n}_{+2}}$
 p(X2≥k) 0.05 0.01
 k 3.841 6.635
(2)在调查中还统计了员工的年龄,发现公司员工的年龄服从正态分布N(35,9),那么从公司中随机选取一名员工,他的年龄在32-38岁之间的概率是多少?(Φ(1)=0.8413)
(3)由于猜测员工的锻炼时间y与年龄x成线性相关,所以根据调查结果进行了线性回归分析,得到回归方程为y=-5x+b,如果员工的平均锻炼时间是110分钟,那么请判断下列说法的正误:
①b=285;
②由于回归方程的斜率是负的,说明年龄越大的员工,每周锻炼时间一定越短;
③由于回归直线方程的斜率是负的,说明两个变量的相关关系是负相关;
④能够算出回归方程,说明两个变旦之间确实是线性相关关系;
⑤回归直线是所有直线中穿过数据点最多的直线;
⑥两个变量是不是成线性相关关系还要看相关系数的大小.

查看答案和解析>>

同步练习册答案