(04年福建卷)(12分)
设函数f(x)=a?b,其中向量a=(2cosx,1),b=(cosx, sin2x),x∈R.
(Ⅰ)若f(x)=1-且x∈[-,],求x;
(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值。
科目:高中数学 来源: 题型:
(04年广东卷)(12分)
设函数
(I)证明:当且时,
(II)点(0<x0<1)在曲线上,求曲线上在点处的切线与轴,轴正向所围成的三角形面积的表达式。(用表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
(04年广东卷)(12分)
设函数,其中常数为整数
(I)当为何值时,
(II)定理:若函数在上连续,且与异号,则至少存在一点,使得
试用上述定理证明:当整数时,方程在内有两个实根
查看答案和解析>>
科目:高中数学 来源: 题型:
(04年江苏卷)设函数,区间M=[a,b](a<b),集合N={},则使M=N成立的实数对(a,b)有 ( )
(A)0个 (B)1个 (C)2个 (D)无数多个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com