精英家教网 > 高中数学 > 题目详情

【题目】设不等式-2<|x-1|-|x+2|<0的解集为M ,a,b∈M .

(Ⅰ)证明:||<

(Ⅱ)比较|1-4ab|与2|a-b|的大小,并说明理由.

【答案】(Ⅰ)证明见解析;(Ⅱ)答案见解析.

【解析】试题分析:

(1)首先求得集合M,然后结合绝对值不等式的性质即可证得题中的结论;

(2)利用平方做差的方法可证得|1-4ab|2|a-b|.

试题解析:

Ⅰ)证明:记f (x) =|x-1|-|x+2|

f(x)= ,所以解得-x,故M=(-,).

所以,||≤|a|+|b|×+×=.

Ⅱ)由(Ⅰ)得0≤a20≤b2.

|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.

所以,|1-4ab|2|a-b|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(﹣2,2)上的函数f(x)满足f(﹣m)+f(1﹣m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足al=﹣2,an+1=2an+4.

(I)证明数列{an+4}是等比数列;

(Ⅱ)求数列{|an|}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+ +4,(a≠0,b≠0),则f(2)+f(﹣2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行“庆元旦”教工羽毛球单循环比赛(任意两个参赛队伍只比赛一场),有高一、高二、高三共三个队参赛,高一胜高二的概率为,高一胜高三的概率为,高二胜高三的概率为,每场胜负相互独立,胜者记1分,负者记0分,规定:积分相同时,高年级获胜.

(1)若高三获得冠军的概率为,求

(2)记高三的得分为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)请根据上表提供的数据,用最小二乘法求出 关于x的线性回归方程
(2)我们把中(1)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型 =c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式 = .R2=1﹣ =0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知数列{an}是等差数列,且a1,a2(a1<a2)分别为方程x2﹣6x+5=0的二根.

(1)求数列{an}的前n项和Sn

(2)在(1)中,设bn=,求证:当c=﹣时,数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

(1)令,求的单调区间;

(2)已知处取得极大值,求实数的取值范围.

查看答案和解析>>

同步练习册答案