16£®ÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãΪF1£¬F2£¬ÓÐÏÂÁÐÑо¿ÎÊÌâ¼°½áÂÛ£º
¢ÙÇúÏß$\frac{x^2}{25-k}+\frac{y^2}{9-k}={1_{\;}}£¨k£¼9£©$ÓëÍÖÔ²CµÄ½¹µãÏàͬ£»
¢ÚË«ÇúÏߵĽ¹µãÊÇÍÖÔ²C µÄ³¤ÖáµÄ¶Ëµã£¬¶¥µãÊÇÍÖÔ²CµÄ½¹µã£¬ÔòÆä±ê×¼·½³ÌΪ$\frac{x^2}{16}-\frac{y^2}{9}=1$£»
¢ÛÈôµãPΪÍÖÔ²ÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬Ôò$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=8£®
¢Ü¹ýÍÖÔ²CµÄÓÒ½¹µãF2ÇÒбÂÊΪk£¨k£¾0£©µÄÖ±ÏßÓëCÏཻÓÚA¡¢BÁ½µã£®Èô$\overrightarrow{AF}=3\overrightarrow{FB}$£¬Ôòk=$\frac{5}{6}$£®
ÔòÒÔÉÏÑо¿½áÂÛÕýÈ·µÄÐòºÅÊÇ¢Ù¢Ú¢Û£®

·ÖÎö ÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãΪF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬³¤Öá¶Ëµã£º£¨¡À5£¬0£©£¬¶ÌÖá¶Ëµã£º£¨0£¬¡À3£©£®
¢ÙÓÉ$\sqrt{25-k-£¨9-k£©}$=4£¬¿ÉµÃ´ËÍÖÔ²ÓëÍÖÔ²CµÄ½¹µãÏàͬ£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚË«ÇúÏߵĽ¹µãÊÇÍÖÔ²C µÄ³¤ÖáµÄ¶Ëµã£¬¶¥µãÊÇÍÖÔ²CµÄ½¹µã£¬¼´¿ÉµÃ³öÆä±ê×¼·½³Ì£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÓÉ$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬ÉèPOµÄÑÓ³¤ÏßÓëÍÖÔ²ÏཻÓÚµãQ£¬ÔòËıßÐÎPF1QF2ÊǾØÐΣ¬Òò´Ë$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=|F1F2|=8£¬¼´¿ÉÅжϳöÕýÎó£®
¢ÜÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³Ì£ºmy=x-4£¬ÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£¨9m2+25£©y2+72my-81=0£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¼°Æä$\overrightarrow{AF}=3\overrightarrow{FB}$£¬-y1=3y2£¬»¯¼ò½â³öm£¬¼´¿ÉµÃ³ök£®

½â´ð ½â£ºÍÖÔ²C£º$\frac{x^2}{25}+\frac{y^2}{9}=1$µÄ½¹µãΪF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬³¤Öá¶Ëµã£º£¨¡À5£¬0£©£¬¶ÌÖá¶Ëµã£º£¨0£¬¡À3£©£®
¢ÙÇúÏß$\frac{x^2}{25-k}+\frac{y^2}{9-k}={1_{\;}}£¨k£¼9£©$£¬ÓÉ$\sqrt{25-k-£¨9-k£©}$=4£¬¿ÉµÃ´ËÍÖÔ²ÓëÍÖÔ²CµÄ½¹µãÏàͬ£¬ÕýÈ·£»
¢ÚË«ÇúÏߵĽ¹µãÊÇÍÖÔ²C µÄ³¤ÖáµÄ¶Ëµã£¬¶¥µãÊÇÍÖÔ²CµÄ½¹µã£¬ÔòÆä±ê×¼·½³ÌΪ$\frac{x^2}{16}-\frac{y^2}{9}=1$£¬ÕýÈ·£»
¢ÛÈôµãPΪÍÖÔ²ÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$£¬ÉèPOµÄÑÓ³¤ÏßÓëÍÖÔ²ÏཻÓÚµãQ£¬ÔòËıßÐÎPF1QF2ÊǾØÐΣ¬Òò´Ë$|{\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}}|$=|F1F2|=8£¬ÕýÈ·£®
¢ÜÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB·½³Ì£ºmy=x-4£¬ÁªÁ¢$\left\{\begin{array}{l}{my=x-4}\\{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1}\end{array}\right.$£¬»¯Îª£¨9m2+25£©y2+72my-81=0£¬¡ày1+y2=-$\frac{72m}{9{m}^{2}+25}$£¬y1y2=$\frac{-81}{9{m}^{2}+25}$£®£¨*£©
¡ß$\overrightarrow{AF}=3\overrightarrow{FB}$£¬¡à-y1=3y2£¬´úÈ루*£©¿ÉµÃ£º39m2=25£¬m£¾0£¬½âµÃm=$\frac{5}{\sqrt{39}}$£¬Ôòk=$\frac{\sqrt{39}}{5}$£®Òò´Ë²»ÕýÈ·£®
ÔòÒÔÉÏÑо¿½áÂÛÕýÈ·µÄÐòºÅÊÇ¢Ù¢Ú¢Û£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û£®

µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢¼òÒ×Âß¼­µÄÅж¨·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Ä³Öʼ첿ÃÅÒª¼ìÑéÒ»ÅúÈéÖÆÆ·ÊÇ·ñºÏ¸ñ£¬´Ó´ý³é¼ìµÄ500´ýÈéÖÆÆ·ÖгéÈ¡40´ý½øÐмìÑ飬ÀûÓÃËæ»úÊý±í³éÈ¡Ñù±¾Ê±£¬ÏȽ«500´ýÈéÖÆÆ·°´000£¬001£¬¡­£¬499½øÐбêºÅ£¬Èç¹û´ÓÒÔÏÂËæ»úÊý±íµÚ2ÐеÚ3ÁеÄÊý¿¼ÊÔÏòÓÒ¶Á£¬ÔòµÃµ½µÄµÚ5¸öÑù±¾µÄ±àºÅÊÇ350

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®É躯Êýf£¨x£©=alnx-bx2£¨x£¾0£©£¬Èôº¯Êýf£¨x£©ÔÚx=1´¦ÓëÖ±Ïßy=-$\frac{1}{2}$ÏàÇУ¬
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ[$\frac{1}{e}$£¬3]ÉϵÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô²»µÈʽx2+2£¨a-2£©x+4£¾0¶ÔÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨0£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑ֪˫ÇúÏß${x^2}-\frac{y^2}{3}=1$µÄÀëÐÄÂÊΪ$\frac{m}{2}$£¬Å×ÎïÏßy2=mxµÄ½¹µãΪF£¬µãp£¨2£¬y0£©£¨y0£¾0£©ÔÚ´ËÅ×ÎïÏßÉÏ£¬MΪÏ߶ÎPFµÄÖе㣬ÔòµãMµ½¸ÃÅ×ÎïÏßµÄ×¼ÏߵľàÀëΪ$\frac{5}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÏÂÁдóС¹ØϵÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$log_4^{0.3}£¼{0.4^3}£¼{3^{0.4}}$B£®${0.4^3}£¼log_4^{0.3}£¼{3^{0.4}}$
C£®$log_4^{0.3}£¼{3^{0.4}}£¼{0.4^3}$D£®${0.4^3}£¼{3^{0.4}}£¼log_4^{0.3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Æ½ÐÐËıßÐÎABCDÖУ¬$\overrightarrow{AC}$=£¨1£¬2£©£¬$\overrightarrow{BD}$=£¨-3£¬2£©£¬Ôò$\overrightarrow{AD}•\overrightarrow{AB}$=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬E£¬FΪA1C1ÉϵĶ¯µã£¬ÇÒEF=$\frac{1}{2}$£¬ÔòÏÂÁнáÂÛÖдíÎóµÄÊÇ£¨¡¡¡¡£©
A£®BD¡ÍCE
B£®¡÷CEFµÄÃæ»ýΪ¶¨Öµ
C£®ËÄÃæÌåBCEFµÄÌå»ýËæEFµÄλÖõı仯¶ø±ä»¯
D£®Ö±ÏßBEÓëCFΪÒìÃæÖ±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®½«a=£¨$\frac{7}{6}$£©${\;}^{\frac{1}{2}}$£¬b=£¨$\frac{6}{5}$£©${\;}^{\frac{1}{2}}$£¬c=£¨$\frac{6}{7}$£©-${\;}^{\frac{1}{3}}$ÕâÈý¸öÊý´ÓСµ½´óÅÅÁÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®c£¼a£¼bB£®c£¼b£¼aC£®a£¼b£¼cD£®a£¼c£¼b

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸