精英家教网 > 高中数学 > 题目详情

【题目】在校体育运动会中,甲乙丙三支足球队进行单循环赛(即每两队比赛一场),共赛三场,每场比赛胜者得3分,负者得0分,没有平局.在每场比赛中,甲胜乙的概率为甲胜丙的概率为乙胜丙的概率为

1)求甲队获第一名且丙队获第二名的概率;

2)求在该次比赛中甲队至少得3分的概率.

【答案】1 2

【解析】

1)若满足条件只需甲胜乙,甲胜丙,且丙胜乙,写出概率;

2)甲队至少得3分包含甲队恰得3分,和甲队得6分,根据分值判断获胜情况,求得概率.

1)若甲队获第一名且丙队获第二名,即甲胜乙,甲胜丙,且丙胜乙,

即甲队获第一名且丙队获第二名的概率是

2)当甲队恰得3分,即甲队胜了一场,甲胜乙且丙胜甲,或甲胜丙且乙胜甲,

当甲恰得6分,即甲队胜了2场,即,

那么该次比赛中甲队至少得3分的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴为,过点的直线轴垂直,椭圆的离心率, 为椭圆的左焦点,.

Ⅰ)求此椭圆的方程;

(Ⅱ是此椭圆上异于的任意一点, , 为垂足,延长到点使得.连接并延长交直线于点, 的中点,判定直线与以为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为圆外一点,若圆上存在一点,使得,则正数的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,解答下列问题:

(1)求输入的的值分别为时,输出的的值;

(2)根据程序框图,写出函数)的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一铁块高温融化后制成一张厚度忽略不计、面积为100dm2的矩形薄铁皮(如图),并沿虚线l1l2裁剪成ABC三个矩形(BC全等),用来制成一个柱体.现有两种方案:

方案①:以为母线,将A作为圆柱的侧面展开图,并从BC中各裁剪出一个圆形作为圆柱的两个底面;

方案②:以为侧棱,将A作为正四棱柱的侧面展开图,并从BC中各裁剪出一个正方形(各边分别与垂直)作为正四棱柱的两个底面.

1BC都是正方形,且其内切圆恰为按方案①制成的圆柱的底面,求底面半径;

2的长为dm,则当为多少时,能使按方案②制成的正四棱柱的体积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数R上的单调增函数,求实数a的取值范围;

2)设 的导函数.

①若对任意的,求证:存在使

②若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示,则函数图象的一个对称中心可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

同步练习册答案