精英家教网 > 高中数学 > 题目详情
已知方向向量为的直线l过椭圆的焦点以及点(0,),直线l与椭圆C交于 A 、B 两点,且A、B两点与另一焦点围成的三角形周长为
(1)求椭圆C的方程
(2)过左焦点且不与x轴垂直的直线m交椭圆于M、N两点,
(O坐标原点),求直线m的方程
(1)                 (2)   
本试题主要是考查了椭圆方程的求解和直线与椭圆位置关系的运用。利用椭圆的几何性质,来表示得到a,b,c的值,从而解得方程,然后设出直线方程,联立方程组,借助于韦达定理,运用代数的方法来表示坐标,同时借助于题目中向量的关系式,得到坐标的关系,消去坐标,得参数的关系式,进而求解得到。解:(1)  
直线与x轴交点即为椭圆的右焦点  ∴c=2
由已知⊿周长为,则4a=,即,所以
故椭圆方程为                  
(2)椭圆的左焦点为,则直线m的方程可设为
代入椭圆方程得:
    

所以,,即  

原点O到m的距离,则
解得   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆上一点M到直线x+2y-10=0的距离的最小值为(    )
A.2B.C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆上一点到右准线的距离为,则该点到左焦点的距离为(  )
A. B. C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)(注意:在试题卷上作答无效)
已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆长轴上有一点到两个焦点之间的距离分别为:3+2,3-2
(1)求椭圆的方程;
(2)如果直线x=t(teR)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线
BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0 )作直线l(与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,、若
,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为F1和F2 ,以F1、F2为直径的圆经过点M(0,b).(1)求椭圆的方程;(2)设直线l与椭圆相交于A,B两点,且.求证:直线l在y轴上的截距为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0),点在椭圆上。
(I)求椭圆的离心率。
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。
【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在椭圆上有一点M是椭圆的两个焦点,若 ,则椭圆离心率的范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆与双曲线有相同的焦点, 则m的值为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案