精英家教网 > 高中数学 > 题目详情

【题目】某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 , 且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 , 并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是 ,丙、丁考试合格的概率都是 ,且考试是否合格互不影响.
(1)求丙、丁未签约的概率;
(2)记签约人数为 X,求 X的分布列和数学期望EX.

【答案】
(1)解:分别记事件甲、乙、丙、丁考试合格为 A,B,C,D.

由题意知 A,B,C,D相互独立,且

记事件“丙、丁未签约”为F,

由事件的独立性和互斥性得:

P(F)=1﹣P(CD)

=


(2)解:X的所有可能取值为0,1,2,3,4.

所以,X的分布列是:

X

0

1

2

3

4

P

X的数学期望


【解析】(1)分别记事件甲、乙、丙、丁考试合格为 A,B,C,D.由题意知 A,B,C,D相互独立,且 .记事件“丙、丁未签约”为F,由事件的独立性和互斥性得能求出丙、丁未签约的概率.(2) X的所有可能取值为0,1,2,3,4,分别求出相应在的概率,由此能求出X的分布列和X的数学期望.
【考点精析】根据题目的已知条件,利用离散型随机变量及其分布列的相关知识可以得到问题的答案,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0, <φ<π)部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为 ,则f(﹣1)=(

A.﹣2
B.2
C.-
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 的离心率为 分别为椭圆的左、右顶点, 为右焦点,直线的交点到轴的距离为,过点轴的垂线 上异于点的一点,以为直径作圆.

(1)求的方程;

(2)若直线的另一个交点为,证明:直线与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品最近30天的价格f(t)(元)与时间t满足关系式:f(t)= ,且知销售量g(t)与时间t满足关系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求该商品的日销售额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】来自某校一班和二班的共计9名学生志愿服务者被随机平均分配到运送矿泉水、清扫卫生、维持秩序这三个岗位服务,且运送矿泉水岗位至少有一名一班志愿者的概率是

(Ⅰ)求清扫卫生岗位恰好一班1人、二班2人的概率;

(Ⅱ)设随机变量为在维持秩序岗位服务的一班的志愿者的人数,求分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|最小值为(
A.1﹣ln2
B.
C.1+ln2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(1)恰有2人申请A片区房源的概率;
(2)申请的房源所在片区的个数的ξ分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中, 底面,四边形是边长为的菱形, 分别是的中点,

(Ⅰ)求证: 平面

(Ⅱ)求二面角的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax,(a∈R)
(1)若函数f(x)在点区间[e,+∞]处上为增函数,求a的取值范围;
(2)若函数f(x)的图象在点x=e(e为自然对数的底数)处的切线斜率为3,且k∈Z时,不等式 k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值;
(3)n>m≥4时,证明:(mnnm>(nmmn

查看答案和解析>>

同步练习册答案