精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=x2+tx+t,?x∈R,f(x)>0,函数g(x)=3x2-2(t+1)x+t,则“?a,b∈(0,1)使得g(a)=g(b)=0”为真命题的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 函数f(x)=x2+tx+t,?x∈R,f(x)>0,利用△=t2-4t<0,0<t<4,运用二次方程根的分布,求出“?a,b∈(0,1)使得g(a)=g(b)=0”为真命题的t的范围,即可求出概率.

解答 解:∵函数f(x)=x2+tx+t,?x∈R,f(x)>0,
∴△=t2-4t<0,∴0<t<4.
“?a,b∈(0,1)使得g(a)=g(b)=0”为真命题,
则$\left\{\begin{array}{l}{0<\frac{t+1}{3}<1}\\{t>0}\\{3-2(t+1)+t>0}\\{4(t+1)^{2}-12t>0}\end{array}\right.$,∴0<t<1,
∴“?a,b∈(0,1)使得g(a)=g(b)=0”为真命题的概率是$\frac{1-0}{4-0}$=$\frac{1}{4}$,
故选C.

点评 本题考查不等式恒成立问题,考查二次方程根的分布,考查概率的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且asinAsinB+bcos2A=$\frac{4}{3}$a.
(1)求$\frac{b}{a}$;
(2)若c2=a2+$\frac{1}{4}$b2,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x|x-2|.若关于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10个不同实数解,则a的取值范围为(  )
A.(0,2)B.(-2,0)C.(1,2)D.(-2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)计算:(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$-(cos15°-$\sqrt{3}$)0+lg2+lg5
(2)已知tanα=-$\frac{1}{3}$,α∈($\frac{π}{2}$,π).化简$\frac{sin2α-co{s}^{2}α}{1+cos2α}$,并求值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(sinx-cosx,2cosx),$\overrightarrow{b}$=(sinx+cosx,sinx)
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tan2x的值;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{3}{5}$,求sin4x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.i为虚数单位,则在复平面上复数z=-1+3i对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设i为虚数单位,若复数z=(2m-8)+(m-2)i是纯虚数,则实数m=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{a}{x}-{e^{-x}}(a∈R$且x>0).若存在实数p,q(p<q),使得f(x)≤0的解集恰好为[p,q],则a的取值范围是(  )
A.(0,$\frac{1}{e}$]B.(一∞,$\frac{1}{e}$]C.(0,$\frac{1}{e}$)D.(一∞,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{1}{2}$sin2xtanx+2sinxtan$\frac{x}{2}$的值域为(  )
A.[0,4]B.[0,4)C.[0,3)∪(3,4]D.[0,3)∪(3,4)

查看答案和解析>>

同步练习册答案