精英家教网 > 高中数学 > 题目详情
16.已知椭圆的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$,A是其右顶点,B是该椭圆在第一象限部分上的一点,且$∠AOB=\frac{π}{4}$,若点C是椭圆上的动点,则$\overrightarrow{OA}•\overrightarrow{BC}$的取值范围为(  )
A.[-3,3]B.[-9,3]C.$[-2-\sqrt{3}\;,\;2-\sqrt{3}]$D.$[-3\sqrt{3}\;,\;3]$

分析 求得直线OB的斜率,代入椭圆方程,求得B点坐标,设C点坐标,利用向量数量积的坐标运算及余弦函数的性质,即可求得$\overrightarrow{OA}•\overrightarrow{BC}$的取值范围.

解答 解:由椭圆的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$焦点在x轴上,A点坐标为($\sqrt{6}$,0),∵$∠AOB=\frac{π}{4}$,
∴直线OB所在的直线为:y=x,
设B点坐标为(x,x),(x>0)
将B点坐标代入到椭圆方程$\frac{x^2}{6}+\frac{y^2}{2}=1$,解得:x2=$\frac{3}{2}$,则x=$\frac{\sqrt{6}}{2}$,
∴B点坐标为($\frac{\sqrt{6}}{2}$,$\frac{\sqrt{6}}{2}$)
设C点坐标为($\sqrt{6}$cosθ,$\sqrt{2}$sinθ),
则$\overrightarrow{OA}•\overrightarrow{BC}$=($\sqrt{6}$,0)•($\sqrt{6}$cosθ-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$sinθ-$\frac{\sqrt{6}}{2}$)=6cosθ-3,
∵cosθ∈[-1,1],
∴当cosθ=-1时,取最小值,最小值为-6-3=-9,
当cosθ=1时,$\overrightarrow{OA}•\overrightarrow{BC}$取最大值,最大值为6-3=3,
$\overrightarrow{OA}•\overrightarrow{BC}$的取值范围[-9,3].
故选B.

点评 本题考查椭圆的参数方程,向量数量积的坐标运算,余弦函数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.球的半径扩大为原来的2倍,它的体积扩大为原来的(  )倍.
A.4B.8C.16D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图示.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了五次试验,得到的数据如下,由最小二乘法求得回归方程$\hat y=0.67x+54.9$,现发有一个数据看不清,请你推断出该
零件个数x1020304050
加工时间y分钟63758288
数据的值为67.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.a、b均为实数,则a<b<0是a2>b2的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=2,AD=4,点F是PB的中点,点E在边BC上移动.
(1)求三棱锥E-PAD的体积;
(2)证明:AF⊥PE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={-2,-1,0,1,2},∁RB={x|$\frac{x-1}{x+2}$≥0},则A∩B=(  )
A.{-1,0,1}B.{-1,0}C.{-2,-1,0}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=-2${\;}^{1-lo{g}_{2}3}$,b=1-log23,c=cos$\frac{5π}{6}$,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,抛物线E:x2=2py(p>0)的焦点为(0,1),圆心M在射线y=2x(x≥0)上且半径为2的圆M与y轴相切.
(Ⅰ)求抛物线E及圆M的方程;
(Ⅱ)过P(2,0)作两条相互垂直的直线,与抛物线E相交于A,B两点,与圆M相交于C,D两点,N为线段CD的中点,当${S_{△NAB}}=4\sqrt{5}$,求AB所在的直线方程.

查看答案和解析>>

同步练习册答案