精英家教网 > 高中数学 > 题目详情

【题目】如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且,(1)证明:平面ABEF平面BCDE; (2)求DE与平面ABC所成角的正弦值。

【答案】(1)见解析;(2).

【解析】试题分析:(1)连接AC、BE,交点为G,推导出从而AG⊥平面BCDE,由此能证明平面ABEF⊥平面BCDE.
(2)以G为坐标原点,分别以GC,GE,GA所在的直线为x轴,y轴,z轴建立如图所示的坐标系,利用向量法能求出FE与平面ABC所成角的正弦值.

试题解析:

(1)证明:正六边形ABCDEF中,连接AC、BE,交点为G,易知,且

在多面体中,由,知,故

平面,故平面

平面ABEF,所以平面ABEF平面BCDE.

(2)以G为坐标原点,分别以GC,GE,GA所在的直线为x轴,y轴,z轴建立如图所示的坐标系.

.

设平面ABC的法向量为

,即,令 ,得

所以,

所以FE与平面ABC所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)的图象如图所示,下列数值排序正确的是(

A.0<f′(2)<f′(3)<f(3)﹣f(2)
B.0<f′(3)<f(3)﹣f(2)<f′(2)
C.0<f(3)<f′(2)<f(3)﹣f(2)
D.0<f(3)﹣f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,且an+1﹣an=2n , n∈N* , 若 +19≤3n对任意n∈N*都成立,则实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A,B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C中心在原点,焦点在坐标轴上,且该椭圆经过点( )和点 .求
(1)椭圆C的方程;
(2)P,Q,M,N四点在椭圆C上,F1为负半轴上的焦点,直线PQ,MN都过F1 ,求四边形PMQN的面积最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,x2+x+1>0,命题q:x∈Q,x2=3,则下列命题中是真命题的是(
A.p∧q
B.¬p∨q
C.¬p∧¬q
D.¬p∨¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,焦点在x轴,且抛物线上点P(2,m)到焦点的距离为3,斜率为2的直线L与抛物线相交于A,B两点且|AB|=3 ,求抛物线和直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx= ,其中a0

)若a=1,求曲线y=fx)在点(2f2))处的切线方程;

)若在区间上,fx)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)证明:Cnm+Cnm1=Cn+1m
(2)证明:Cn1+2Cn2+3Cn3+…+nCnn=n2n1

查看答案和解析>>

同步练习册答案