精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断f(x)奇偶性;
(3)讨论函数f(x)在[2,+∞)上的单调性?并证明你的结论.

【答案】
(1)解:∵函数图象过点(1,5).1+m=5

∴m=4


(2)解:此时函数的定义域为:{x|x≠0且x∈R}

∵f(﹣x)=﹣x﹣ =﹣(x+ )=﹣f(x)

∴奇函数


(3)解:f′(x)=1﹣

∵x≥2

∴f′(x)≥0

∴f(x)在[2,+∞)上单调递增


【解析】(1)由图象过点,将点的坐标代入函数解析式求解m即可.(2)先看定义域关于原点对称,再看f(﹣x)与f(x)的关系判断.(3)用导数法或定义判断即可.
【考点精析】通过灵活运用函数单调性的判断方法和函数的奇偶性,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较;偶函数的图象关于y轴对称;奇函数的图象关于原点对称即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心的轨迹方程为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设是曲线上的动点,点的横坐标为,点轴上,的内切圆的方程为,将表示成的函数,并求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<2k+1},且(UA)∩B=,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,1)上的函数f(x)是奇函数,且函数f(x)在(﹣1,1)上是减函数,则满足f(1﹣a)+f(1﹣a2)<0的实数a的取值范围是(
A.[0,1]
B.(﹣2,1)
C.[﹣2,1]
D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2 ;③圆心在直线x﹣3y=0上.求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足,对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤ (x+2)2成立.
(1)证明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表达式;
(3)在(2)的条件下,设g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)图象上的点都位于直线y= 的上方,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,图象关于原点中心对称且在定义域上为增函数的是(
A.
B.f(x)=2x﹣1
C.
D.f(x)=﹣x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是一个算法程序框图,在集合中随机抽取一个数值作为输入,则输出的的值落在区间内的概率为

A. 0.8 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +x.
(1)判断并证明f(x)的奇偶性;
(2)证明:函数f(x)在区间(1,+∞)上为增函数;
(3)求函数f(x)在区间[1,3]的最值.

查看答案和解析>>

同步练习册答案