精英家教网 > 高中数学 > 题目详情
17.在四面体OABC中,棱OA、OB、OC两两垂直,且OA=1,OB=2,OC=3,G为△ABC的重心,则$\overrightarrow{OG}$•($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$)=$-\frac{4}{3}$.

分析 由三角形重心的性质和向量的三角形法则得出$\overrightarrow{OG}$=$\frac{1}{3}$($\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$),再由向量的平方即为模的平方和向量垂直的条件计算.

解答 解:如图所示,连接AG并延长与BC相交于点D.
∵点G是底面△ABC的重心,
∴$\overrightarrow{AG}$=$\frac{2}{3}\overrightarrow{AD}$=$\frac{2}{3}×\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$=$\frac{1}{3}(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA})$,
又$\overrightarrow{OG}=\overrightarrow{OA}+\overrightarrow{AG}$=$\overrightarrow{OA}+\frac{1}{3}$($\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA}$)
=$\frac{1}{3}$($\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$),
则$\overrightarrow{OG}$•($\overrightarrow{OA}+\overrightarrow{OB}-\overrightarrow{OC}$)=$\frac{1}{3}$($\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}$)•($\overrightarrow{OA}+\overrightarrow{OB}-\overrightarrow{OC}$)
=$\frac{1}{3}$[$(\overrightarrow{OA}+\overrightarrow{OB})^{2}-(\overrightarrow{OC})^{2}$=$\frac{1}{3}$($|\overrightarrow{OA}{|}^{2}+|\overrightarrow{OB}{|}^{2}+2\overrightarrow{OA}•\overrightarrow{OC}-|\overrightarrow{OC}{|}^{2}$
=$\frac{1}{3}$(1+4+0-9)=-$\frac{4}{3}$.
故答案为:$-\frac{4}{3}$.

点评 本题考查平面向量的数量积运算,考查了重心的性质和向量的三角形法则,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义域为R的奇函数,且f(-x)=f(2+x).
(I)求f(0)的值;
(II)证明函数f(x)是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等比数列{an}的前n项和为Sn,若S4、S2、S3成等差数列,且a2+a3+a4=-18,若Sn≥2016,则n的取值范围为大于等于11的奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知有相同的两焦点F1,F2的椭圆$\frac{{x}^{2}}{m}$+y2=1(m>1)和双曲线$\frac{{x}^{2}}{n}$-y2=1(n>0),P是它们的一个交点,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$等于(  )
A.1B.$\frac{1}{2}$
C.0D.随m,n的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i是虚数单位.已知复数$Z=\frac{1+3i}{3+i}+{({1+i})}^2$,则复数Z对应点落在(  )
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.集合A={1,0},B={3,4},Q={2a+b|a∈A,b∈B},则Q的所有元素之和等于18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=4x,$f(\frac{2015}{4})$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数$f(x+1)=\frac{4}{{{x^2}+2}}$,若f(a)=2,则实数a=1.

查看答案和解析>>

同步练习册答案