精英家教网 > 高中数学 > 题目详情
7.求函数y1=4x与y2=$\frac{4}{x}$图象的交点P的坐标,并画出图象.

分析 联立方程组,求出点的坐标,画图即可.

解答 解:$\left\{\begin{array}{l}{y=4x}\\{y=\frac{4}{x}}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-4}\end{array}\right.$,
∴交点P的坐标为(1,4),(-1,-4)
图象为:

点评 本题考查了函数图象的画法和交点坐标的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知a<0,设p:实数x满足x2-5ax+4a2<0;q:实数x满足x2+8x+12>0,且q是p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=-x2+2x+a(x∈[0,1],若f(x)有最小值-1,则f(x)的最大值为(  )
A.1B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.命题p:方程4x2+4(m-2)x+1=0的两根为x1,x2(x1<x2),且x1∈(-∞,1),x2∈(1,2).
命题q:关于x的不等式|x+2|≤$\frac{1}{2}$-m解集非空,“p或q”为真,
求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如果f(x)=$\frac{1-x}{x}$,g(x)=1+x,则f[g(x)]=$-\frac{x}{1+x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x+1)=x2+2x,求f(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.作出下列函数的图象.
(1)y=2x+2
(2)y=$\frac{x+2}{x-1}$
(3)y=($\frac{1}{2}$)|x|
(4)y=|log2x-1|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=lg|x|的单凋递减区间为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex+ax.
(1)设曲线y=f(x)在x=1处的切线与直线x+(e-1)y=1垂直,求a的值;
(2)若对任意实数x>0,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案