精英家教网 > 高中数学 > 题目详情
关于x的不等式x2-(a+1)x+a<0的解集中恰有3个整数解,则a的取值范围是
[-3,-2)∪(4,5]
[-3,-2)∪(4,5]
分析:利用一元二次不等式的解法,解不等式,根据不等式的解集中恰有3个整数解,确定解集的取值范围,即可求解.
解答:解:由x2-(a+1)x+a<0,
得(x-1)(x-a)<0,
若a=1,则不等式无解.
若a>1,则不等式的解为1<x<a,此时要使不等式的解集中恰有3个整数解,则此时3个整数解为x=2,3,4,则4<a≤5.
若a<1,则不等式的解为a<x<1,此时要使不等式的解集中恰有3个整数解,则此时3个整数解为x=0,=-1,-2,则-3≤a<-2.
综上,满足条件的a的取值范围是[-3,-2)∪(4,5].
故答案为:[-3,-2)∪(4,5].
点评:本题主要考查一元二次不等式的解法以及应用,考查学生分析问题,解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式x2-(3a+1)x+2a(a+1)<0的解集是A,函数f(x)=
1
2-x
x+1
的定义域是B,若A⊆B.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2≤5x-4解集A,关于x的不等式x2-(a+2)x+2a≤0(a∈R)解集为M.
(1)求集合A;
(2)若 M⊆A,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={ t|t∈Z,关于x的不等式x2≤2-|x-t|至少有一个负数解 },则集合A中的元素之和等于
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)关于x的不等式x2-2ax-8a2<0(a>0)的解集为(x1,x2),且:x2-x1=15,则a=(  )

查看答案和解析>>

同步练习册答案