精英家教网 > 高中数学 > 题目详情

高为数学公式的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    1
  4. D.
    数学公式
C
分析:由题意可知ABCD所在的圆是小圆,对角线长为 ,四棱锥的高为,而球心到小圆圆心的距离为,则推出顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,即可求出底面ABCD的中心与顶点S之间的距离.
解答:由题意可知ABCD所在的圆是小圆,对角线长为 ,四棱锥的高为
点S,A,B,C,D均在半径为1的同一球面上,球心到小圆圆心的距离为,顶点S在球心距的垂直分的平面上,而顶点S到球心的距离为1,所以底面ABCD的中心与顶点S之间的距离为1
故选C
点评:本题是基础题,考查球的内接多面体的知识,考查逻辑推理能力,计算能力,转化与划归的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网四棱锥S-ABCD中,底面ABCD为矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B为60°,且AB=SC=4.
(1)求证:平面SAB⊥平面ABCD;
(2)求三棱锥C-ASD的高(即以△SAD为底的三棱锥的高).

查看答案和解析>>

科目:高中数学 来源: 题型:

(文做理不做)已知:正四棱锥S-ABCD的高为
3
,斜高为2,设E为AB中点,F为SC中点,M为CD边上的点.
(1)求证:EF∥平面SAD;
(2)试确定点M的位置,使得平面EFM⊥底面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)四棱锥S-ABCD中,四边形ABCD为矩形,M为AB中点,且△SAB为等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.
(1)求证:平面SBD⊥平面SMC
(2)设四棱锥S-ABCD外接球的球心为H,求棱锥H-MSC的高;
(3)求平面SAD与平面SMC所成的二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)四棱锥S-ABCD中,四边形ABCD为矩形,M为AB中点,且△SAB为等腰直角三角形,SA=SB=2,SC⊥BD,DA⊥平面SAB.
(1)求证:平面SBD⊥平面SMC
(2)设四棱锥S-ABCD外接球的球心为H,求棱锥H-MSC的高.

查看答案和解析>>

科目:高中数学 来源:重庆市高考真题 题型:单选题

高为的四棱锥S-ABCD的底面是边长为1的正方形,点S,A,B,C,D均在半径为1的同一球面上,则底面AB-CD的中心与顶点S之间的距离为
[     ]
A.
B.
C.1
D.

查看答案和解析>>

同步练习册答案