精英家教网 > 高中数学 > 题目详情

【题目】某大学在一次公益活动中聘用了10名志愿者,他们分别来自于ABC三个不同的专业,其中A专业2人,B专业3人,C专业5人,现从这10人中任意选取3人参加一个访谈节目.

(1)求3个人来自两个不同专业的概率;

(2)设X表示取到B专业的人数,求X的分布列与数学期望.

【答案】(1)(2)见解析

【解析】

令事件A表示“3个来自于两个不同专业”,表示“3个人来自于同一个专业”,表示“3个人来自于三个不同专业”,利用对立事件的概率公式先求得,则可得结果.

随机变量X有取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和

令事件A表示“3个来自于两个不同专业”,

表示“3个人来自于同一个专业”,

表示“3个人来自于三个不同专业”,

个人来自两个不同专业的概率:

随机变量X有取值为0,1,2,3,

的分布列为:

X

0

1

2

3

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2α4cosα=0.已知直线l的参数方程为为参数),点M的直角坐标为.

1)求直线l和曲线C的普通方程;

2)设直线l与曲线C交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为8,其短轴的两个端点与长轴的一个端点构成正三角形。

(1)求的方程;

(2)设的左焦点,为直线上任意一点,过点的垂线交于两点,.

(i)证明:平分线段(其中为坐标原点);

(ii)当取最小值时,求点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点围成的四边形的面积为,其离心率为

(1)求椭圆的方程;

(2)过椭圆的右焦点作直线轴除外)与椭圆交于不同的两点,在轴上是否存在定点,使为定值?若存在,求出定点坐标及定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形,,且.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于原点对称,其中为常数.

1)求的值;

2)当时, 恒成立,求实数的取值范围;

3若关于的方程上有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在甲、乙两个班级进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下的2×2列联表.已知在全部105人中抽到随机抽取1人为优秀的概率为

优秀

非优秀

总计

甲班

10

乙班

30

合计

(1)请完成上面的列联表;

(2)根据列联表的数据,若按95%的可能性要求,能否认为“成绩与班级有关系”?

P(K2≥x0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

x0

0.455

0.708

1.323

2.072

2.076

3.841

5.024

6.635

7.879

10.828

参考公式及数据:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间租赁甲、乙两种设备生产AB两类产品,甲种设备每天能生产A类产品8件和B类产品15件,乙种设备每天能生产A类产品10件和B类产品25件,已知设备甲每天的租赁费300元,设备乙每天的租赁费400元,现车间至少要生产A类产品100件,B类产品200件,所需租赁费最少为__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴,财政补贴由地方财政补贴和国家财政补贴两部分组成. 某地补贴政策如下(表示纯电续航里程):

三个纯电动汽车店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下:

(每位客户只能购买一辆纯电动汽车

(1)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是店纯电动汽车且享受补贴不低于3.5万元的概率;

(2)从上述两个纯电动汽车店的客户中各随机选一人,求恰有一人享受5万元财政补贴的概率;

(3)从上述三个纯电动汽车店的客户中各随机选一人, 这3个人享受的财政补贴分别记为. 求随机变量的分布列. 试比较数学期望的大小;比较方差 的大小. (只需写出结论)

查看答案和解析>>

同步练习册答案