精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= 的定义域是( )
A.{x|x≥4}
B.{x|x<4}
C.{x|x≤4,且x≠1}
D.{x|x<4,且x≠﹣1}

【答案】C
【解析】解:要使函数有意义,x满足: ,得x≤4且x≠1,

所以函数f(x)的定义域为{x|x≤4且x≠1},

所以答案是:C.

【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,则三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为(
A.1
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且a=2, . (Ⅰ)如果b=3,求c的值;
(Ⅱ)如果 ,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )

A.AC⊥平面ABB1A1
B.CC1与B1E是异面直线
C.A1C1∥B1E
D.AE⊥BB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ,曲线y=f(x)在点(2,f(2))处的切线方程为7x﹣4y﹣12=0.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数是相等函数的为( )
A.
B.f(x)=(x﹣1)2 , g(x)=x﹣1
C.f(x)=x2+x+1,g(t)=t2+t+1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=100.
(1)求数列{bn}的通项bn
(2)设数列{an}的通项an=loga(1+ ),a>0,且a≠1,记Sn是数列{an}的前n项的和.试比较Sn logabn+1的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的定义域;
(2)求f(1),f(﹣1),f(2),f(﹣2);
(3)判断并证明f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+(y﹣2)2=1,直线l的方程为x﹣2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当 时,求直线CD的方程;
(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

同步练习册答案