精英家教网 > 高中数学 > 题目详情

已知椭圆的左右焦点分别为,且经过点,为椭圆上的动点,以为圆心,为半径作圆.

(1)求椭圆的方程;

(2)若圆轴有两个交点,求点横坐标的取值范围.

 

【答案】

(1);(2).

【解析】

试题分析:(1)利用椭圆的定义列出表达式,求出,再由求出,写出椭圆方程;(2)先找出圆的的圆心和半径,因为圆轴有两个交点,所以,化简得,又因为为椭圆上的点,所以代入椭圆,得出关于的不等式,解出的范围.

试题解析:(1)由椭圆定义得,                      1分

,                  3分

.   又 , ∴ .                       5分

故椭圆方程为.                                   6分

(2)设,则圆的半径,    7分

圆心轴距离 ,                                   8分

若圆轴有两个交点则有,      9分

化简得.                                        10分

为椭圆上的点  ,                           11分

代入以上不等式得

,解得 .                           12分

,                                                 13分

.                                               14分

考点:1.椭圆的定义;2.圆的圆心和半径;3.点到直线的距离公式.

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省高三第一次月考理科数学试卷(解析版) 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当

变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,

若不是,说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式的左右焦点分别是F1,F2,过右焦点F2且斜率为k的直线与椭圆交于A,B两点.
(1)若k=1,求|AB|的长度、△ABF1的周长;
(2)若数学公式,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,

说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

同步练习册答案