精英家教网 > 高中数学 > 题目详情

【题目】已知函数的最小正周期为,将的图象向左平移个单位后,所得图象关于原点对称,则函数的图象(

A.关于直线对称B.关于直线对称

C.关于点(0)对称D.关于点(0)对称

【答案】D

【解析】

的图像向左平移个单位后,所得图像关于原点对称,所以的图像关于点(0)对称;也可根据条件求出函数的解析,结合函数的对称性进行求解.

因为将的图象向左平移个单位后,所得图象关于原点对称,所以的图象关于点对称,故D正确;

fx)的最小正周期为π

π,得ω2

fx)=cos2x+φ),

fx)的图象向左平移个单位后,得到ycos[2x+φ]cos2xφ),所得图象关于原点对称,

φkπkZ

φkπkZ

φ

∴当k0时,φ

fx)=cos2x),验证其它选项不满足;

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.

(1)求频率分布直方图中的值并估计这50户用户的平均用电量;

(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:

①从类用户中任意抽取3户,求恰好有2户打分超过85分的概率;

②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?

满意

不满意

合计

类用户

类用户

合计

附表及公式:

<>0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的不断发展和人们消费观念的不断提升,越来越多的人日益喜爱旅游观光.某人想在20195月到某景区旅游观光,为了避开旅游高峰拥挤,方便出行,他收集了最近5个月该景区的观光人数数据见下表:

月份

2018.12

2019.1

2019.2

2019.3

2019.4

月份编号

1

2

3

4

5

旅游观光人数(百万人)

0.5

0.6

1

1.4

1.7

1)由收集数据的散点图发现,可用线性回归模型拟合旅游观光人数少(百万人)与月份编号之间的相关关系,请用最小二乘法求关于的线性回归方程,并预测20195月景区的旅游观光人数.

2)当地旅游局为了预测景区给当地的财政带来的收入状况,从20194月的旅游观光人群中随机抽取了200人,并对他们旅游观光过程中的开支情况进行了调查,得到如下频率分布表:

开支金额(千元)

频数

10

30

40

60

30

20

10

若采用分层抽样的方法从开支金额低于4千元的游客中抽取8人,再在这8人中抽取3人,记这3人中开支金额低于3千元的人数为,求的分布列和数学期望.

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,以为圆心作半径为的圆,圆轴的负半轴交于点,与抛物线分别交于点.

1)若为直角三角形,求半径的值;

2)判断直线与抛物线的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率为,左、右焦点分别为,点在椭圆上,的周长为

1)求椭圆的方程;

2)已知直线l经过点,且与椭圆交于不同的两点,若为坐标原点)成等比数列,判断直线的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为,直线与抛物线交于两点.到准线的距离之和最小为8.

1)求抛物线方程;

2)若抛物线上一点纵坐标为,直线分别交准线于.求证:以为直径的圆过焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(其中)的图象如图所示,为了得到的图象,则只要将的图象上所有的点(

A.向左平移个单位长度,纵坐标缩短到原来的,横坐标不变

B.向左平移个单位长度,纵坐标伸长到原来的3倍横坐标不变

C.向右平移个单位长度,纵坐标缩短到原来的,横坐标不变

D.向右平移个单位长度,纵坐标伸长到原来的3倍,横坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为 (t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,QAP的中点.

(1)求点Q的轨迹C2的直角坐标方程;

(2)直线l与直线C2交于AB两点,若|AB|≥2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案