精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=\left\{\begin{array}{l}{2^{-x}},x≥4\\ f(x+1),x<4\end{array}\right.$则f(log23)的值为(  )
A.-24B.-12C.$\frac{1}{12}$D.$\frac{1}{24}$

分析 由已知得f(log23)=f(log23+3)=$\frac{1}{{2}^{lo{g}_{2}3+3}}$,由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{2^{-x}},x≥4\\ f(x+1),x<4\end{array}\right.$,
∴f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=$\frac{1}{{2}^{lo{g}_{2}3+3}}$=$\frac{1}{3×{2}^{3}}$=$\frac{1}{24}$.
故选:D.

点评 本题考查函数值的求法,是基础题,解题是要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$且a∈(-6,3),则z=$\frac{y}{x-a}$仅在点A(-1,$\frac{1}{2}$)处取得最大值的概率为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{1}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$f(x)=\frac{{a•{2^x}+a-2}}{{{2^x}+1}}$(x∈R),若f(x)满足f(-x)+f(x)=0,
(1)求实数a的值及f(3);
(2)判断函数的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=$\left\{\begin{array}{l}{2x(0≤x≤1)}\\{{x}^{2}-4x+m(x>1)}\end{array}\right.$的值域为[0,+∞),则m的取值范围是m≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线y=ex+2在P(0,3)处的切线方程是x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是(  )
A.奇函数B.偶函数
C.非奇非偶函数D.既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.棱锥被平行于底面的平面所截,若截得的小棱锥的侧面积与棱台的侧面积之比为9:16,则截得的小棱锥的体积与棱台的体积之比为(  )
A.27:98B.3:4C.9:25D.4:7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的首项a1=2,且an=2an-1-1(n∈N+,n≥2).
(1)求证:数列{an-1}为等比数列;并求数列{an}的通项公式;
(2)求数列{n•an-n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,以原点O为极点,以x轴正半轴为极轴建立极坐标系,点P的极坐标为(1,π),已知曲线C:ρ=2$\sqrt{2}asin(θ+\frac{π}{4})(a>0)$,直线l过点P,其参数方程为:$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),直线l与曲线C分别交于M,N.
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)若|PM|+|PN|=5,求a的值.

查看答案和解析>>

同步练习册答案