精英家教网 > 高中数学 > 题目详情
(2013•顺义区二模)以下茎叶图记录了甲、乙两组各四名工人1天加工的零件数,则甲组工人1天每人加工零件的平均数为
20
20
;若分别从甲、乙两组中随机选取一名工人,则这两名工人加工零件的总数超过了38的概率为
7
16
7
16
分析:先利用平均数和方差的定义求出甲组工人1天加工零件的平均数即可.再求出所有的基本事件共有4×4个,满足这两名工人加工零件的总数超过了38的基本事件有7个,根据古典概型概率计算公式求得结果.
解答:解:甲组工人1天每人加工零件的平均数为
18+19+21+22
4
=20,
所有的基本事件共有4×4=16个,满足这两名工人加工零件的总数超过了38的基本事件有:
(18,21),(19,21),(21,19),(18,21),(22,17),(22,19),(22,21),共有7个,
故这两名工人加工零件的总数超过了38的概率为 
7
16

故答案为:20,
7
16
点评:本题主要考查古典概型及其概率计算公式的应用,茎叶图的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知函数f(x)=
ex
1+ax2
,其中a为正实数,x=
1
2
是f(x)的一个极值点.
(Ⅰ)求a的值;
(Ⅱ)当b>
1
2
时,求函数f(x)在[b,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设函数f(x)=
log2x,x≥2
2-x,x<2
,则满足f(x)≤2的x的取值范围是
[0,4]
[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知集合A={x∈R|-3<x<2},B={x∈R|x2-4x+3≥0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)复数
3-2i
1+i
=(  )

查看答案和解析>>

同步练习册答案