精英家教网 > 高中数学 > 题目详情
已知椭圆4x2+y2=1及直线y=x+m.
(1)当直线与椭圆有公共点时,求实数m的取值范围.
(2)求被椭圆截得的最长弦所在直线方程.
分析:(1)当直线与椭圆有公共点时,直线方程与椭圆方程构成的方程组有解,等价于消掉y后得到x的二次方程有解,故△≥0,解出即可;
(2)设所截弦的两端点为A(x1,y1),B(x2,y2),由(1)及韦达定理可把弦长|AB|表示为关于m的函数,根据函数表达式易求弦长最大时m的值;
解答:解:(1)由
4x2+y2=1
y=x+m
得5x2+2mx+m2-1=0,
当直线与椭圆有公共点时,△=4m2-4×5(m2-1)≥0,即-4m2+5≥0,
解得-
5
2
≤m≤
5
2

所以实数m的取值范围是-
5
2
≤m≤
5
2

(2)设所截弦的两端点为A(x1,y1),B(x2,y2),
由(1)知,x1+x2=-
2m
5
x1x2=
m2-1
5

所以弦长|AB|=
2
|x1-x2|
=
2
(x1+x2)2-4x1x2
=
2
(-
2m
5
)2-
4(m2-1)
5
=
2
2
5-4m2
5

当m=0时|AB|最大,此时所求直线方程为y=x.
点评:本题考查直线与圆锥曲线的位置关系,考查函数与方程思想,弦长公式、韦达定理是解决该类题目的基础知识,应熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线y=x+m.
(1)当m为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为
2
10
5
,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线y=x+m
(1)m为何值时,直线与椭圆有公共点?
(2)求直线被椭圆截得的最长弦所在的直线方程,并求弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2=1及直线l:y=x+m.
(Ⅰ)当m为何值时,直线l与椭圆有公共点?
(Ⅱ)若直线l被椭圆截得的线段长为
4
2
5
,求直线的方程.
(Ⅲ)若直线l与椭圆相交于A、B两点,是否存在m的值,使得
OA
OB
=0
?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆4x2+y2-8kx-4ky+8k2-4=0(k为参数),存在一条直线,使得此直线被这些椭圆截得的线段长都等于
5
,求直线方程
y=2x±2
y=2x±2

查看答案和解析>>

同步练习册答案