精英家教网 > 高中数学 > 题目详情
在空间,到定点的距离为定长的点的集合称为球面.定点叫做球心,定长叫做球面的半径.平面内,以点为圆心,以为半径的圆的方程为,类似的在空间以点为球心,以为半径的球面方程为                                            
是球面上任一点,由空间两点的距离公式可得,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,在直四棱柱中,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB中点。
(1)求证:
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,,底面是菱形,且的中点.
(1)求四棱锥的体积;
(2)证明:平面
(3)侧棱上是否存在点,使得平面?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,在棱长为2的正方体ABCD -A1B1C1D1中,E、F分别为A1D1CC1 的中点.

(1)求证:EF∥平面ACD1
(2)求面EFB与底面ABCD所成的锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,下列命题正确的是( )
A.两组对边分别相等的四边形是平面图形B.四条边都相等的四边形是平面图形
C.一组对边平行的四边形是平面图形D.对角相等的四边形是平面图形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

ABCDCDEF是两个全等的正方形,且两个正方形所在平面互相垂直,MBC的中点,则异面直线AMDF所成角的正切值为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,已知矩形ABCD中,AB=,AD=1,将△ABD沿BD折起,使点A在平面BCD内的射影落在DC上

(1)求证:平面ADC⊥平面BCD;
(2)求点C到平面ABD的距离;
(3)若E为BD中点,求二面角B—AD—E的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设α、β、γ为彼此不重合的三个平面,ι为直线,给出下列命题:
①若α∥β,α⊥γ,则β⊥γ,
②若α⊥γ,β⊥γ,且αnβ=ι,则ι⊥γ
③若直线l与平面α内的无数条直线垂直则直线ι与平而α垂直,
④若α内存在不共线的三点到β的距离相等.则平面α平行于平面β
上面命题中,真命题的序号为            (写出所有真命题的序号)

查看答案和解析>>

同步练习册答案