精英家教网 > 高中数学 > 题目详情
若logx(2x2+1)<logx(3x)<0成立,则x的取值范围是
A.(0,)B.(0,)
C.(,1)D.()
D
对于logx(3x)<0,若x>1,则3x<1,矛盾,故0<x<1.
又2x2+1>3x>1,∴x.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知关于x的不等式:<1.
(1)当a=1时,解该不等式;
(2)当a为任意实数时,解该不等式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10 分)
解关于x的不等式:)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

解不等式:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

解不等式loga(1-)>1  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ex-x-1,g(x)=e2x-x-7.
(1)解不等式f(x)≤g(x);
(2)事实上:对于?x∈R,有f(x)≥0成立,当且仅当x=0时取等号.由此结论证明:(1+
1
x
)x
<e,(x>0).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

∈(),则不等式log(1-x)>2的解集是( )
A.{x∣-cos<x<cosB.{x∣-1<x<-cos或cos<x<1}
C.{x∣x<-cos或x>cosD.{x∣-1<x<cos或-cos<x<1}

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

不等式的解集为               。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

解不等式:

查看答案和解析>>

同步练习册答案