精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{{2}^{-x},x>1}\end{array}\right.$,则f(f(2))=(  )
A.$\frac{1}{16}$B.16C.$\frac{1}{4}$D.4

分析 先求出f(2)=2-2=$\frac{1}{4}$,从而f(f(2))=f($\frac{1}{4}$),由此能求出结果.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤1}\\{{2}^{-x},x>1}\end{array}\right.$,
∴f(2)=2-2=$\frac{1}{4}$,
f(f(2))=f($\frac{1}{4}$)=($\frac{1}{4}$)2=$\frac{1}{16}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知抛物线y2=2px(p>0)经过点A(1,$\frac{1}{2}$),则它的准线方程为(  )
A.x=-$\frac{1}{32}$B.x=-$\frac{1}{16}$C.y=-$\frac{1}{32}$D.y=-$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设某等腰三角形的底角为α,顶角为β,且cosβ=$\frac{3}{5}$.
(Ⅰ)求sinα的值;
(Ⅱ)若函数f(x)=tanx在[-$\frac{π}{3}$,α]上的值域与函数g(x)=2sin(2x-$\frac{π}{3}$)在[0,m]上的值域相同,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=20.3,b=log0.23,c=log32,则a,b,c的大小关系是(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{a{x}^{3},x>0}\\{cosx,-\frac{π}{2}<x<0}\end{array}\right.$(a∈R),若f(f(-$\frac{π}{3}$))=1,则a的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.记[x]表示不超过x的最大整数,如[1.2]=1,[0.5]=0,则方程[x]-x=lnx的实数根的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,有一块半径为2的半圆形钢板,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.设∠DAB=θ(0<θ<$\frac{π}{2}$),L为等腰梯形ABCD的周长.
(1)求周长L与θ的函数解析式;
(2)试问周长L是否存在最大值?若存在,请求出最大值,并指出此时θ的大小;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=$\frac{1}{2}$BC=2,E在BC上,且BE=$\frac{1}{2}$AB=1,侧棱PA⊥平面ABCD.
(1)求证:平面PDE⊥平面PAC;
(2)若△PAB为等腰直角三角形.
(i)求直线PE与平面PAC所成角的正弦值;
(ii)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在(x-2)10展开式中,二项式系数的最大值为 a,含x7项的系数为b,则$\frac{b}{a}$=(  )
A.$\frac{80}{21}$B.$\frac{21}{80}$C.$-\frac{21}{80}$D.$-\frac{80}{21}$

查看答案和解析>>

同步练习册答案