【题目】已知被直线, 分成面积相等的四个部分,且截轴所得线段的长为2.
(1)求的方程;
(2)若存在过点的直线与相交于, 两点,且点恰好是线段的中点,求实数的取值范围.
【答案】(1) (2)
【解析】试题分析:(1)被直线, 分成面积相等的四个部分说明圆心在直线的交点,再根据截得x轴线段长求出半径即可;(2)根据平面几何知识知,“点是线段的中点”等价于“圆上存在一点使得的长等于的直径”,转化为,即,从而求解.
试题解析:
(1)设的方程为,
因为被直线分成面积相等的四部分,
所以圆心一定是两直线的交点,
易得交点为,所以.
又截x轴所得线段的长为2,所以.
所以的方程为.
(2)法一:如图, 的圆心,半径,
过点N作的直径,连结.
当与不重合时, ,
又点是线段的中点;
当与重合时,上述结论仍成立.
因此,“点是线段的中点”等价于“圆上存在一点使得的长等于的直径”.
由图可知,即,即.
显然,所以只需,即,解得.
所以实数的取值范围是.
法二:如图, 的圆心
过作交于点,并设.
由题意得,
所以,
又因为,所以,
将代入整理可得,
因为,所以,,解得.
科目:高中数学 来源: 题型:
【题目】双曲线 的左、右焦点分别为F1、F2,直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为 , 是等边三角形,求双曲线的渐近线方程;
(2)设 ,若l的斜率存在,且|AB|=4,求l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,函数.
(Ⅰ)当时,解不等式;
(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;
(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,底面为正三角形, 底面,且, 是的中点.
(1)求证: 平面;
(2)求证:平面平面;
(3)在侧棱上是否存在一点,使得三棱锥的体积是?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于,),直线,分别与直线交于,两点.
()求双曲线的方程.
()证明为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在坐标原点,焦点在轴上,离心率,虚轴长为2.
(1)求双曲线的标准方程;
(2)若直线与双曲线相交于两点,( 均异于左、右顶点),且以为直径的圆过双曲线的左顶点,求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于利用斜二侧法得到的直观图有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( )
A. ①② B. ① C. ③④ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com