【题目】设直线与函数的图像恰有两个不同的公共点.求出所有这样的直线方程.
科目:高中数学 来源: 题型:
【题目】如图,长途车站P与地铁站O的距离为千米,从地铁站O出发有两条道路l1,l2,经测量,l1,l2的夹角为45°,OP与l1的夹角满足tan=(其中0<θ<),现要经过P修条直路分别与道路l1,l2交汇于A,B两点,并在A,B处设立公共自行车停放点.
(1)已知修建道路PA,PB的单位造价分别为2m元/千米和m元/千米,若两段道路的总造价相等,求此时点A,B之间的距离;
(2)考虑环境因素,需要对OA,OB段道路进行翻修,OA,OB段的翻修单价分别为n元/千米和n元/千米,要使两段道路的翻修总价最少,试确定A,B点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.
(1)求l的普通方程和C的直角坐标方程;
(2)若l与C相交于A,B两点,且,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位组织“学习强国”知识竞赛,选手从6道备选题中随机抽取3道题.规定至少答对其中的2道题才能晋级.甲选手只能答对其中的4道题。
(1)求甲选手能晋级的概率;
(2)若乙选手每题能答对的概率都是,且每题答对与否互不影响,用数学期望分析比较甲、乙两选手的答题水平。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),是的导函数.
(Ⅰ)当时,求证;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】不期而至的新冠肺炎疫情,牵动了亿万国人的心,全国各地纷纷捐赠物资驰援武汉.有一批捐赠物资需要通过轮船沿长江运送至武汉,已知该运送物资的轮船在航行中每小时的燃料费和它的速度的立方成正比,已知当速度为10海里/时时,燃料费是6元/时,而其他与速度无关的费用是96元/时,问当轮船的速度是多少时,航行1海里所需的费用总和最小?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com