精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,若双曲线${x^2}-\frac{y^2}{b^2}=1(b>0)$的焦点到其渐近线的距离等于抛物线y2=2px上的点M(1,2)到其焦点的距离,则实数b=2.

分析 利用抛物线y2=2px上点M(1,2)求出p,通过已知条件求出b即可.

解答 解:点M(1,2)在抛物线y2=2px上,所以p=2,
所以抛物线为y2=4x,又y2=4x的焦点到其准线的距离为2.
双曲线${x^2}-\frac{y^2}{b^2}=1(b>0)$的焦点(c,0)到其渐近线x+$\frac{y}{b}$=0的距离:$\frac{c}{\sqrt{1+\frac{1}{{b}^{2}}}}$=b=2,
由题意可知b=2,
故答案为:2.

点评 本题考查双曲线的简单性质以及抛物线的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设x,y∈R,下列不等式成立的是(  )
A.1+|x+y|+|xy|≥|x|+|y|B.1+2|x+y|≥|x|+|y|C.1+2|xy|≥|x|+|y|D.|x+y|+2|xy|≥|x|+|y|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.
(1)求证:BE∥平面PAD;
(2)求证:平面PBC⊥平面PBD;
(3)设Q为棱PC上一点,$\overrightarrow{CQ}$=λ$\overrightarrow{CP}$,试确定λ的值使得二面角Q-BD-P为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在空间中,已知$\overrightarrow{AB}$=(2,4,0),$\overrightarrow{DC}$=(-1,3,0),则异面直线AB与DC所成角θ的大小为(  )
A.45°B.90°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列向量组中,能作为平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(1,-2)B.$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(5,7)C.$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(6,10)D.$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=(4,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点A的坐标为(4,2),F是抛物线y2=2x的焦点,点M是抛物线上的动点,当|MF|+|MA|取得最小值时,点M的坐标为(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|(3-x)(x+1)>0},B={x|-2<x≤1},则A∩B=(  )
A.(-1,1]B.(-2,3]C.(-2,-1)D.(-2,1-)∪[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为2x+y=0,一个焦点为($\sqrt{5}$,0),则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案