精英家教网 > 高中数学 > 题目详情

【题目】在极坐标系中,曲线,曲线.以极点为坐标原点,极轴为轴正半轴建立平面直角坐标系,曲线的参数方程为为参数).

(1)求的直角坐标方程;

(2)交于不同的四点,这四点在上排列顺次为,求的值.

【答案】(1)的直角坐标方程为 的直角坐标方程为;(2)

【解析】试题分析:(1)根据 ,将极坐标方程化为直角坐标方程,(2)将直线参数方程依次代入的直角坐标方程,由圆的几何性质以及参数几何意义得 ,再由韦达定理得,代入求得的值.

试题解析:解:(Ⅰ)因为 ,由,得

所以曲线的直角坐标方程为

,得

所以曲线的直角坐标方程为.

(Ⅱ)如图,四点在直线上的排列顺序从下到上依次为 ,它们对应的参数分别为 .

连接,则为正三角形,所以.

代入,得: ,

,故,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)试讨论函数的极值情况;

(2)证明:当时,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)当m=1时,求A∪B;
(2)若BRA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

非体育迷

体育迷

合计

10

55

合计


(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知集合M={﹣1,1,2,4}N={0,1,2}给出下列四个对应法则,其中能构成从M到N的函数是(
A.y=x2
B.y=x+1
C.y=2x
D.y=log2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f(x)的定义域为D,若对于任意x1、x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x+sinπx﹣3的某一个对称中心,并利用对称中心的上述定义,可得到f( )+f( )+…+f( )+f( )的值为(
A.4027
B.﹣4027
C.8054
D.﹣8054

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数.

)讨论上的单调性;

)当时,若曲线上总存在相异两点,使曲线两点处的切线互相平行,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照 ,…, 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中 的值;

(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:全集U=R,函数 的定义域为集合A,集合B={x|x2﹣a<0}
(1)求UA;
(2)若A∪B=A,求实数a的范围.

查看答案和解析>>

同步练习册答案