精英家教网 > 高中数学 > 题目详情

【题目】某城市现有人口总数为100万人,如果年自然增长率为 试回答下面的问题:

1)写出该城市人口总数(万人)与年份(年)的函数关系式;

2)计算10年以后该城市人口总数(精确度为0.1万人);

3)计算大约多少年以后该城市人口总数将达到120万人(精确度为1年).

(提示:

【答案】1

2112.7万人;

316年后.

【解析】

1)利用指数函数模型,写出的函数关系式.

2)令代入(1)中求得的函数解析式,由此求得年后该城市人口总数.

3)令代入(1)中求得的函数解析式,根据题目所给数据求得的值,由此判断大约需要的年份.

由题意得:

1)该城市人口总数(万人)与年份(年)的函数关系式为

2)当 时,得(万人);

3)设经过 年后该城市人口总数将达到120万人,则

,两边取以底的对数得,代入题目所给数据,解得

即经过16 年后该城市人口总数将达到120万人.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的

A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱,平面平面,分别是的中点.

(1)证明:

(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:

分组

频数

频率

[3995,3997

10


[3997,3999

20


[3999,4001

50


[4001,4003]

20


合计

100


)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;

)若以上述频率作为概率,已知标准乒乓球的直径为4000 mm,试求这批球的直径误差不超过003 mm的概率;

)统计方法中,同一组数据经常用该组区间的中点值(例如区间[3999,4001)的中点值是4000作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与半圆弧所在平面垂直,上异于的点

(1)证明:平面平面

(2)在线段上是否存在点,使得平面?说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x) 为奇函数.

(1)b的值;

(2)证明:函数f(x)在区间(1,+∞)上是减函数;

(3)解关于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象恰好经过三个象限,则实数的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(ax2+2x+3).

(1)若f(x)定义域为R,求a的取值范围;

(2)若f(1)=1,求f(x)的单调区间;

(3)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】αβ是两个不重合的平面,在下列条件中,可判断平面αβ平行的是(  )

A. mn是平面内两条直线,且

B. 内不共线的三点到的距离相等

C. 都垂直于平面

D. mn是两条异面直线,,且

查看答案和解析>>

同步练习册答案