精英家教网 > 高中数学 > 题目详情
2.已知圆C:(x-3)2+(y-4)2=1,点A(-1,0),点P是圆上的动点,则d=|PA|2的最大值为33+8$\sqrt{2}$,最小值为33-8$\sqrt{2}$,.

分析 求出圆心与A的距离|CA|=$\sqrt{(-1-3)^{2}+(0-4)^{2}}$=4$\sqrt{2}$,圆的半径为1,即可得出结论.

解答 解:圆心与A的距离|CA|=$\sqrt{(-1-3)^{2}+(0-4)^{2}}$=4$\sqrt{2}$,圆的半径为1,
则d=|PA|2的最大值为(4$\sqrt{2}$+1)2=33+8$\sqrt{2}$,最小值为(4$\sqrt{2}$-1)2=33-8$\sqrt{2}$,
故答案为33+8$\sqrt{2}$;33-8$\sqrt{2}$.

点评 本题考查点与圆的位置关系,考查距离的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如果直线y=kx-1与双曲线x2-y2=4的右支有两个公共点,求k的取值范围(  )
A.1<k<$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$C.-$\frac{\sqrt{5}}{2}$<k<-1D.-$\frac{\sqrt{5}}{2}$<k<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以$A(-\sqrt{3},0)$为圆心,4为半径作圆,$B(\sqrt{3},0)$,C为圆上任意一点,分别连接AC,BC,过BC的中点N作BC的垂线,交AC于点M,当点C在圆上运动时,
(1)求M点的轨迹方程,并说明它是何种曲线;
(2)求直线y=kx+1截(1)所得曲线弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.下列说法:
①若一个命题的否命题是真命题,则这个命题不一定是真命题;
②若一个命题的逆否命题是真命题,则这个命题是真命题;
③若一个命题的逆命题是真命题,则这个命题不一定是真命题;
④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;
其中正确的说法①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=2x3+ax2+b-2是奇函数,则ab=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线L1:x+ay+6=0与直线L2:(a-2)x+3y+2a=0互相平行,则a的值为(  )
A.-1或3B.1或3C.-1D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0)
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)当q=2时,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+bx+c的图象在y轴上的截距为1,且满足f(x+1)=f(x)+x+1,
试求:(1)f(x)的解析式;
(2)当f(x)≤7时,对应的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于二次函数y=-4x2+8x-5,
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)画出它的图象,并说明其图象由y=-4x2的图象经过怎样平移得来;
(3)分析函数的单调性.
(4)求函数的最大值或最小值.

查看答案和解析>>

同步练习册答案