精英家教网 > 高中数学 > 题目详情

【题目】试研究,一个三角形能否同时具有以下两个性质:(1)三边是连续的三个自然数;(2)最大角是最小角的2.若能,请求出这个三角形的三边以及最大角的余弦值;若不能,请说明理由.

【答案】456;最大角的余弦值为

【解析】

设三角形的三边分别为,对应的角分别为,则,由正弦定理及二倍角的正弦公式可得,又由余弦定理得,则,解出方程即可求出三边,再根据余弦定理即可求出最大角的余弦值.

解:设三角形的三边分别为,对应的角分别为

,由题意可得

由正弦定理可得

又由余弦定理可得

,化简可得,解得,或(舍去),

∴三角形的三边分别为456

∴三角形的最大角的余弦值

综上:存在三角形的三边分别为456满足题意,最大角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,内角ABC的对边分别为abc,且.

1)若,请判断的形状;

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,侧棱底面,点的中点.

求证:平面

若直线与平面所成角为,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求证:存在唯一的实数,使得直线与曲线相切;

2)若,求证:.

(注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解高三男生的体能达标情况,抽调了120名男生进行立定跳远测试,根据统计数据得到如下的频率分布直方图.若立定跳远成绩落在区间的左侧,则认为该学生属“体能不达标的学生,其中分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若该校高三某男生的跳远距离为,试判断该男生是否属于“体能不达标”的学生?

2)该校利用分层抽样的方法从样本区间中共抽出5人,再从中选出两人进行某体能训练,求选出的两人中恰有一人跳远距离在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2.

1)设1箱零件人工检验总费用为元,求的分布列;

2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种类型的题目,此类题目有六个选项ABCDEF,其中有三个正确选项,满分6分,赋分标准为每选对一个得2分,每选错一个扣3分,最低得分为0”.在某校的一次测试中出现了这种类型的题目,已知此题的正确答案是ACD,假定考生作答的答案中选项的个数不超过三个.

1)若甲同学只能判断选项AD是正确的,现在他有两种选择:一种是将AD作为答案,另一种是在BCEF这四个选项中任选一个与AD组成一个含三个选项的答案.则甲同学的最佳选择是哪一种?请说明理由;

2)若乙同学无法判断所有选项,他决定在6个选项中任选3个作为答案:

i)设乙同学此题得分为分,求的分布列;

ii)已知有20名和乙同学情况相同的同学,且这20名考生答案互不相同,他们此题的平均得分为a分,现从这20名考生中任选3名考生,计算得到这3人平均得分为b分,试求a的值及的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求函数的单调递增区间;

(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

同步练习册答案