精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin
x
2
cos
x
2
+cos2
x
2
-2.

(Ⅰ)将函数f(x)化简成Asin(ωx+φ)+B(A>0,φ>0,φ∈[0,2π))的形式,并指出f(x)的周期;
(Ⅱ)求函数f(x)在[π,
17π
12
]
上的最大值和最小值
分析:(Ⅰ)根据题意,f(x)=sin
x
2
cos
x
2
+cos2
x
2
-2.
化简为Asin(ωx+φ)+B的形式,然后求出f(x)的周期
(Ⅱ)根据题意,求出f(x)在[π,
17π
12
]
上的单调区间,然后根据单调性的意义分别求出最大值和最小值.
解答:解:(Ⅰ)f(x)=
1
2
sinx+
1+cosx
2
-2=
1
2
(sinx+cosx)-
3
2
=
2
2
sin(x+
π
4
)-
3
2

故f(x)的周期为2kπ{k∈Z且k≠0}.
(Ⅱ)由π≤x≤
17
12
π,得
5
4
π≤x+
π
4
5
3
π

因为f(x)=
2
2
sin(x+
π
4
)-
3
2
在[π,
4
]上是减函数,
在[
4
17π
12
]上是增函数.
故当x=
4
时,f(x)有最小值-
3+
2
2

而f(π)=-2,f(
17
12
π)=-
6+
6
4
<-2,
所以当x=π时,f(x)有最大值-2.
点评:本题考查Asin(ωx+φ)+B中参数的物理意义,以及三角函数的周期性,还有三角函数的最值.通过求f(x)在已知区间上的单调性来求最值.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(附加题)
(Ⅰ)设非空集合S={x|m≤x≤l}满足:当x∈S时有x2∈S,给出下列四个结论:
①若m=2,则l=4
②若m=-
1
2
,则
1
4
≤l≤1

③若l=
1
2
,则-
2
2
≤m≤0
④若m=1,则S={1},
其中正确的结论为
②③④
②③④

(Ⅱ)已知函数f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若对于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,则b的取值范围为
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

将正奇数列{2n-1}中的所有项按每一行比上一行多一项的规则排成如下数表:
记aij是这个数表的第i行第j列的数.例如a43=17
(Ⅰ)  求该数表前5行所有数之和S;
(Ⅱ)2009这个数位于第几行第几列?
(Ⅲ)已知函数f(x)=
3x
3n
(其中x>0),设该数表的第n行的所有数之和为bn
数列{f(bn)}的前n项和为Tn,求证Tn
2009
2010

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封二模)已知函数f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函数f(x)的单调递增区间;
(II)记△ABC的内角A、B、C所对的边长分别为a、b、c若f(A)=
3
2
,△ABC的面积S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黑龙江一模)已知函数f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函数f(x)的单调递增区间;
(Ⅱ)已知△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

同步练习册答案