精英家教网 > 高中数学 > 题目详情
13.如图所示,已知空间四边形ABCD的边BC=AC,AD=BD,BE⊥CD于点E,AH⊥BE于点H,求证:AH⊥平面BCD.

分析 取AB中点F,连接DF、CF,由已知推导出AB⊥CD,从而得到CD⊥平面ABH,进而CD⊥AH,由此能证明AH⊥平面BCD.

解答 证明:取AB中点F,连接DF、CF,
∵AC=BC,AD=BD,
∴DF⊥AB,CF⊥AB,
又∵DF、CF∈平面FCD,DF∩CF=F
∴AB⊥平面FCD,
∵CD?平面FCD,∴AB⊥CD,
又∵BE⊥CD,且BE?平面ABH,BE∩AB=B,
∴CD⊥平面ABH,
∵AH?平面ABH,∴CD⊥AH,
由已知条件,AH⊥BE,BE∩CD=E.
∴AH⊥平面BCD.

点评 本题考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题p:?x∈R,3x>2x;命题q:?x∈R,tanx=2,则下列命题为真命题的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∧qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x)是偶函数,对x∈R,都有f(2+x)=f(2-x),当f(-3)=-2时,f(2015)的值为(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一家饭店有客房150间,每间每天住宿费100元时,客房全满,饭店要提高客房档次,提高住宿费增加收人,如果住宿费每间每天每增加20元,客房出租数就会减少10间,不考虑其他因素,饭店客房每间每天住宿费为多少元时,饭店的每天收入最高?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正方体AC1中,与面ABCD的对角线AC异面的棱有6条.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px(p>0)上的一点M(1,m)到其焦点的距离为5,则实数p=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x),g(x)的定义域分别为Df,Dg,且Df?Dg,若对于任意x∈Df,都有g(x)=f(x),则称函数g(x)为f(x)在Dg上的一个延拓函数.设f(x)=2x,x∈(-∞,0),g(x)为f(x)在R上的一个延拓函数.
(1)若g(x)是奇函数,则g(x)=$\left\{\begin{array}{l}{-{2}^{-x},x>0}\\{0,x=0}\\{{2}^{x},x<0}\end{array}\right.$;
(2)若g(x)满足:①当x≥0,g(x)=$\frac{ax+b}{x+1}$;
②值域为(0,2);
③对于任意的x1,x2∈R,且x1≠x2,都有$\frac{g({x}_{1})-g({x}_{2})}{{x}_{x}-{x}_{2}}$>0,
则实数a,b的取值分别为2,1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}中,a1=-24,d=2.求
(1)求数列的通项公式an
(2)数列的前n项和Sn
(3)当n为何值时,Sn有最小值,且最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα-3cosα=0,则sin2α+sinαcosα-2=-$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案