精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣lnx﹣1.
(1)若函数f(x)在区间[1,+∞)上递增,求实数a的取值范围;
(2)求证:ln (n∈N*).

【答案】
(1)解:函数f(x)的定义域为(0,+∞),

由题意知f′(x)=a﹣ ≥0在区间[1,+∞)上恒成立,

所以a≥ ,又y= 在区间[1,+∞)上递减,所以 =1,

即实数a的取值范围为[1,+∞)


(2)证明:取a=1,由(1)有f(x)在区间[1,+∞)上递增,

所以,当x>1时,f(x)>f(1)=0即lnx<x﹣1,

因为1+ >1,(n∈N*),

所以ln(1+ )<1+ ﹣1=

即ln


【解析】(1)问题转化为a≥ ,根据函数的单调性求出a的范围即可;(2)求出lnx<x﹣1,根据1+ >1,(n∈N*)证明结论即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆 : x2+y2+Dx+Ey+3=0 ,圆 关于直线 x+y-1=0对称,圆心在第二象限,半径为
(1)求圆 的方程;
(2)已知不过原点的直线 l 与圆 相切,且在 轴、 轴上的截距相等,求直线 l 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合M={x||x﹣ | },P={x|﹣1≤x≤4},则(UM)∩P等于(
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3<x≤4}
D.{x|3≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x4﹣2x3 , g(x)=﹣4x2+4x﹣2,x∈R.
(1)求f(x)的最小值;
(2)证明:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=4sinθ,直线l的参数方程是 (t为参数).
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知X的分布列为:

X

﹣1

0

1

P

设Y=2X+3,则Y的期望E(Y)=(
A.3
B.1
C.0
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=4x焦点为F,点D为其准线与x轴的交点,过点F的直线l与抛物线相交于A,B两点,则△DAB的面积S的取值范围为(
A.[5,+∞)
B.[2,+∞)
C.[4,+∞)
D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.

分组

频数

频率

[50,60)

5

0.05

[60,70)

a

0.20

[70,80)

35

b

[80,90)

25

0.25

[90,100)

15

0.15

合计

100

1.00

(I)求a,b的值及随机抽取一考生恰为优秀生的概率;
(Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;
(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,F1、F2分别是双曲线 =1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支交于A、B两点,若△F2AB是等边三角形,则双曲线的离心率为(
A.
B.2
C. ﹣1
D.1+

查看答案和解析>>

同步练习册答案