精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)={(\frac{1}{2})^x}$-tan2x,则f(x)在[0,2π]上的零点个数为(  )
A.2B.3C.4D.5

分析 设y=$(\frac{1}{2})^{x}$和y=tan2x在同一坐标系中[0,2π]上的图象,观察它们的交点个数,得到已知函数的零点个数.

解答 解:设y=$(\frac{1}{2})^{x}$和y=tan2x在同一坐标系中[0,2π]上的图象,
如图:通过观察得到它们的交点个数为4个,所以已知函数的零点个数为4个.
故选C.

点评 本题主要考查函数的零点个数的判断,利用函数零点与图形交点之间的关系,利用数形结合是解决此类问题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设正项数列{an}的前n项和为Sn,满足Sn+1=$\frac{1}{2}$a2Sn+a1,S3=14.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an-1,求$\frac{{a}_{1}}{{b}_{1}{b}_{2}}$+$\frac{{a}_{2}}{{b}_{2}{b}_{3}}$+…+$\frac{{a}_{n}}{{b}_{n}{b}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.△ABC中,B(-4,0),C(4,0),AB+AC=10,则顶点A的轨迹方程是(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±3)B.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠±5)
C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±3)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1(x≠±5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,已知四边形BCDE为直角梯形,∠B=90°,BE∥CD,且BE=2CD=2BC=2,A为BE的中点,将△EDA沿AD折到△PDA位置(如图2),使得PA⊥平面ABCD,连接PC、PB,构成一个四棱锥P-ABCD.
(Ⅰ)求证AD⊥PB;
(Ⅱ)求二面角B-PC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.有关部门为了了解雾霾知识在学校的普及情况,印制了若干份满分为10分的问卷到各学校做调查.某中学A,B两个班各被随机抽取5名学生进行问卷调查,得分如下:
A班(单位:分)58999
B班(单位:分)678910
(1)请计算A,B两个班的平均分,并估计哪个班的问卷得分要稳定一些;
(2)如果把B班5名学生的得分看成一个总体,并用简单随机抽样从中抽取样本容量为2的样本,求样本的平均数与总体平均数之差的绝对值不小于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}sin(ωx+φ)(ω>0,-\frac{π}{2}≤φ<\frac{π}{2})$的图象关于直线x=$\frac{π}{3}$对称,且图象上相邻两个最高点的距离为π.
(1)求函数f(x)的解析式;
(2)若$f(\frac{α}{2})=\frac{{4\sqrt{3}}}{5}(\frac{π}{6}<α<\frac{2π}{3})$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四种说法中,错误的个数是(  )
①命题“若函数f(x)=sinx+cosx,则$f'(\frac{π}{4})=0$”是真命题;
②“若am2<bm2,则a<b”的逆命题为真;
③“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
④命题“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x02-3x0-2≤0”
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{x}^{2},x≤0}\end{array}\right.$,则不等式f(x)<2的解集为$(-\sqrt{2},4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某重点高中拟把学校打造成新型示范高中,为此制定了很多新的规章制度,新规章制度实施一段时间后,学校就新规章制度的认知程度随机抽取100名学生进行问卷调查,调查卷共有20个问题,每个问題5分,调查结束后,发现这100名学生的成绩都在[75,100]内,按成绩分成5组:第1组[75,80),第2组[80,85)第3组[85,90),第4组[90,95),第5组[95,100],绘制成如图所示的频率分布直方图,已知甲、乙、丙上分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对新规取章制度作深入学习.
(1)求这100人的平均得分(同-组数据用该区间的中点值作代表);
(2)求第3,4,5组分别选取的人数;
(3)若甲、乙、丙都被选取对新规章制度作深人学习,之后要从这6人随机选取人2再全面考查他们对新规章制度的认知程度,求甲、乙、丙这3人至多有一人被选取的概率.

查看答案和解析>>

同步练习册答案