精英家教网 > 高中数学 > 题目详情
7.某几何体的三视图如图所示,则该几何体的表面积为$4+4\sqrt{3}$.

分析 判断几何体的形状,画出几何体的图形,利用三视图的数据求解几何体的表面积即可.

解答 解:由三视图可知,该几何体的直观图为三棱锥与长方体的组合体,其直观图如下:

其中,三棱锥的底面是直角边长分别为$\sqrt{3},1$的直角三角形,且有一条长为1的侧棱垂直于底面;
长方体的长、宽、高分别为$\sqrt{3},1,1$,故该几何体的表面积为$S=1×1×2+\sqrt{3}×1×3+\frac{1}{2}×1×\sqrt{3}×2+\frac{1}{2}×1×2×2=4+4\sqrt{3}$.
故答案为:$4+4\sqrt{3}$.

点评 本题考查几何体的表面积的求法,考查画图能力以及空间想象能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=2asin(2x+$\frac{π}{6}$)+2a+b,x∈[$\frac{π}{4}$,$\frac{3π}{4}$],并且f(x)的最小值为-3,最大值为$\sqrt{3}$-1,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{OA}$=(sin$\frac{x}{3}$,$\sqrt{3}$cos$\frac{x}{3}$),$\overrightarrow{OB}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$)(x∈R),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$.
(1)求函数f(x)的解析式,并求图象的对称中心的横坐标;
(2)若x∈(0,π],方程f(x)=a有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知?ABCD,则$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{3}+\frac{y^2}{2}=1$的焦点坐标是(  )
A.(0,±1)B.(±1,0)C.$(0,±\sqrt{2})$D.$(±\sqrt{2},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四边形ABCD为等腰梯形,PD⊥平面ABCD,F为PC的中点,CD=AD=PD,AB=4AE=2CD=4.
(1)求证:EF⊥PC;
(2)求点A到平面EDF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(m,-1)$,若$\overrightarrow a⊥\overrightarrow b$,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x、y满足不等式组$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{y-4≤0}\end{array}\right.$,则z=2x+y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sinωx($\sqrt{3}$cosωx+sinωx)(ω>0)的图象两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求ω的值;
(2)求函数f(x)的单凋减区间;
(3)若对任意的x1,x2∈[0,$\frac{π}{2}$],都有,|f(x1)-f(x2)|<m,求实数m的取值范围.

查看答案和解析>>

同步练习册答案